拉曼研究所邀请个人申请实验量子通信领域的初级研究员 (JRF) 职位。我们鼓励有志于攻读博士学位的候选人申请。该项目将使候选人进入 RRI 博士课程,前提是候选人在入职六个月后举行的面试中表现出色。候选人必须拥有优秀且一致的学术记录以及物理学方面的核心能力和研究能力。RRI 的量子信息和计算 (QuIC) 实验室正在研究几种安全量子通信方法。由于算法突破和量子计算机的即将出现都对基于传统密钥分发的通信工具构成了巨大威胁,量子密钥分发被证明是提供信息理论上安全通信途径的唯一可用方法,在银行和国防等战略部门尤为重要。以下两个项目有开放的博士职位。其中之一是印度政府科技部量子科学技术计划下“长距离量子通信:中继器和中继技术”的雄心勃勃的项目 (http://210.212.36.85/quest/People/urbasi.html)。该项目涉及与 Arun Pati 教授、Ujjwal Sen 教授和 Aditi Sen De 教授 (HRI) 的合作。第二个项目是一个大型项目,即与印度空间研究组织 (ISRO) 的 UR Rao 卫星中心 (URSC) 合作进行的卫星技术量子实验 (QuEST) [http://www.rri.res.in/quic/landing_QKD.php]。该项目旨在利用卫星开发量子通信技术。通过这个项目,RRI 将在 URSC 的支持下开发新的量子密钥分发工具,其中也将涉及基于卫星的技术。我们目前正在研究所的 QuIC 实验室、光与物质物理组寻找两名初级研究员 (JRF)。候选人最初将以 JRF 的身份受聘一年。如果候选人表现出出色的研究敏锐度,PI 将推荐他/她参加博士入学面试(入职后六个月至一年内)。面试成功后,候选人将进入 RRI 博士项目,继续与 PI 一起进行研究,攻读博士学位。通过国家资格考试 - CSIR-UGC NET 的候选人,包括讲师资格、GATE 或由中央政府部门及其机构和机构(如 DST、DBT、DAE、DOS、DRDO、MHRD、ICAR、ICMR、IIT、IISc、IISER 等)举办的国家资格考试,符合该职位的资格。
状态 WAPC 审查 本报告仅供 McCabe Capital Pty Ltd (McCabe) 使用。作者对任何非预期受众和/或通过 McCabe 以外的其他方获得本报告的人使用或依赖本报告中包含的任何信息不承担任何责任。作者不对报告中可能包含的任何由他人提供并由作者在本报告中复制的信息负责。除非另有约定,否则本报告产生的版权和任何其他知识产权均专属于 McCabe,不得复制或披露给任何其他人。本报告中包含的计划和数字仅供一般参考,可能会无意中使用来自外部来源的不受控制的数据。作者不保证计划的准确性,不应将其用于任何详细的场地设计。本报告的内容(包括任何计划)仍归 McCabe 所有。© McCabe 2024
摘要。Anwar A,Zainuddin,Djawad Mi,AslamyahS.2023。使用混合微生物提高其营养质量的雨树(萨曼萨曼)粉粉的发酵。生物多样性24:5863-5872。雨树(萨曼萨曼)种子粉是蛋白质的来源;然而,由于存在抗营养剂,例如单宁蛋白作为蛋白质抑制剂,高粗纤维含量,溶解的蛋白质以及干燥和有机物的消化率低。使用混合微生物发酵可能会增强雨树粉的营养价值。这项研究旨在提高营养质量,并在体外使用混合微生物在体外使用混合微生物来减少雨树粉中的抗营养因素。这项研究中使用的微生物包括芽孢杆菌,酿酒酵母和根茎sp。这项研究是使用完全随机设计的阶乘设计的,即使用两个因素,即3剂混合微生物(0、1.5、3和4.5 ml/100 g雨树籽粉)和3个不同的孵育时间(42、72和96小时)。微生物剂量和孵育时间之间存在显着相互作用。The treatment of 4.5 mL of mixed microbes/100 g rain tree seed meal and a 72 hours incubation time reduced substantially crude fiber content (59.60%) and crude fat (73.20%), coupled with an increase in crude protein content (11.62%), NFE (6.52%), dry matter digestibility (DMD) (36.78%), organic matter digestibility (OMD) (50.42%)和溶解的蛋白质含量(20.27%)。单宁含量在处理4.5 ml混合微生物/100g雨树粉时显着降低(37.72%),孵育时间为96小时。这些发现表明,经受发酵72小时或更长时间的雨树粉可改善营养质量,DMD和OMD。
硅仍然是技术上最重要的材料之一,广泛应用于各种微电子和微机电系统 (MEMS) 设备和传感器。几十年的深入工业研究已经带来了一些最先进的硅材料加工路线,但有关其机械性能的一些细节仍然是个谜。这并不是因为缺乏努力,而是因为其复杂性。就变形机制而言,位错塑性、断裂和各种相变都是可能的,具体取决于加载速率、应力状态、尺寸、温度、杂质的存在等。本研究重点关注硅中的相变,这种相变发生在以压缩载荷为主的围压下 [1-3]。这使得仪器压痕成为诱导此类行为的流行选择 [4,5],我们在各种温度下都进行了这种测试。本研究的独特之处在于联合使用了两种事后显微镜技术:压痕的拉曼映射和聚焦离子束 (FIB) 加工提升的透射电子显微镜 (TEM)。这样做是为了试图更详细地了解不仅发生了哪些相变,而且了解它们在空间中的分布情况以及这种相变与压头下方局部应力状态的关系。在高温下,使用配备 800C 的 Hysitron PI88 原位 SEM 压痕和配备金刚石 Berkovich 尖端的原型高真空平台纳米压痕系统测试了具有 <001> 取向和 p 型掺杂的硅晶片,电阻率为 0.001-0.005 Ω-cm,相当于 1x1019 - 1x1020 cm-3 硼掺杂。沿着压痕的对角线准备提取件,从而将一个面和一个角一分为二。在减薄和转移到半网格之前,先沉积保护性铂。样品制备采用 FEI Versa 3D 双束和 EasyLift 操纵器(Thermo Fischer Scientific,希尔斯伯勒),并使用在明场中以 300keV 运行的 Technai F30 TEM 进行成像。图 1 显示了硅从室温到 450°C 的纳米压痕行为变化的摘要。其中,硬度最初随着温度升高到大约 150°C,然后开始稳步下降。这是一个相当有趣的观察结果,因为当性能由位错塑性介导时,硬度和屈服强度通常会随着温度的升高而降低 - 这表明在低温范围内其他行为占主导地位。这也体现在压痕的后期 SEM 成像中,因为在室温下会出现剥落,在 100°C 时会消失,然后在 200°C 时变成延性流动。剥落归因于卸载过程中晶格膨胀的相变。图 2 展示了一些关于解释这种硬度变化的变形机制变化的理解,其中显示了事后拉曼图和 TEM 图像。此处,室温拉曼图显示压头压痕下有一个强烈的相变区域,这从 TEM 成像中也可以看出来。当温度升高到 100°C 时,拉曼光谱显示从非晶态、R8 和 BC8 硅相的复杂混合物急剧转变为六方相和金刚石立方体相。事后 TEM 也显示相变区域的变化,特别是总相变材料的减少。在 200°C 时,拉曼光谱显示为金刚石立方体,含有少量六方材料。TEM 显示压痕下似乎以孪生塑性为主,几乎没有明显的相变材料。
利什曼病是由利什曼原虫属的原生动物寄生虫引起的媒介传播疾病,是一种复杂的疾病,主要影响世界上热带地区。不幸的是,尽管付出了广泛的努力,但没有可供人类使用的疫苗。无疑,对宿主 - 载体 - 寄生虫相互作用的全面了解对于开发有效的预防性疫苗是重要的。最近已经发现了沙蝇唾液在疾病进展中的作用,这可以在疫苗设计中做出重大贡献。在这篇综述中,我们试图关注最有可能符合疫苗开发先决条件的策略(基于当前的理解),包括活着的衰减/非致病性和亚基DNA疫苗。创新的方法,例如反向遗传学,酥脆/R-CAS9和无抗生素选择,可以有效地弥补与这些平台相关的固有缺陷。我们的主要目标是在控制疾病的同时更加注意有效疫苗开发的先决条件是巨大的需求。
30. Kumar M、Anderson MJ、Antony JW、Baldassano C、Brooks PP、Cai MB、Chen P-HC、Ellis CT、Henselman-Petrusek G、Huberdeau D、Hutchinson BJ、Li PY、Lu Q、Manning JR、Mennen AC、Nastase SA、Richard H、Schapiro AC、Schuck NW、Suo D、Turek JS、Vo VA、Wallace G、Wang Y、Zhang H、Zhu X、Capotă M、Cohen JD、Hasson U、Li K、Ramadge PJ、Turk-Browne NB、Willke TL、Norman KA (2022) BrainIAK:脑成像分析套件。 Openings,1(4): 1-19。
• 技术 – 博兹曼是技术和研发公司的中心,这些公司要么在蒙大拿州成立,要么迁至蒙大拿州。主要雇主包括专注于软件开发、光子学研发和制造的公司。光子学和光学技术是一个重要的技术集群,Oracle、Workiva、Aurora、Hyundai、Zoot Enterprises 和众多初创公司等技术公司也是如此。新成立的 MonArk Quantum Foundry 是蒙大拿州立大学和阿肯色大学合作成立的,正在推进量子技术(在计算中使用亚原子粒子的量子态)。该项目获得了超过 2000 万美元的资助,该项目旨在让美国成为下一次量子革命的领导者,也是美国国家科学基金会“十大创意”的一部分。