简单的摘要:转移是一个复杂的动态多步过程;但是,我们的知识仍然有限。很少有循环肿瘤细胞(CTC)是转移性前体细胞,代表转移的中间阶段。上皮 - 间质可塑性(EMP)在组织发育和稳态以及转移形成中具有至关重要的作用。在这项研究中,我们通过检测涉及上皮 - 间质和间质 - 上皮 - 上皮(Met)过渡的标记,探索了从疾病和治疗期间从结肠癌和治疗期间从结肠癌患者获得的一系列独特CTC系的EMP表型。这项研究表明,这些结肠CTC线仅获得了少数间充质特征来迁移和浸润,而观察到MET相关标记的增加,这表明需要转移竞争的CTC需要快速恢复到上皮表型,以在远处的部位重新肿瘤。
传统的推荐系统(例如矩阵分解方法)主要集中于学习共享密集的设备空间,以表示项目和用户偏好。sub-sub-sub,诸如RNN,GRUS和最近的序列模型在顺序推荐的任务中出现并出色。此任务需要了解用户历史交互中存在的顺序结构,以预测他们可能喜欢的下一个项目。基于大型语言模型(LLM)在各种任务中的成功,最近使用在庞大的文本中鉴定的LLM进行了研究,以进行顺序建议。要使用LLM进行顺序推荐,用户交互的历史记录和模型对下一个项目的预测都以文本形式表示。我们提出了CALREC,这是一种两阶段的LLM登录框架,它使用两种对比性损失和语言建模损失的混合物以两位较高的方式对经过验证的LLM进行了验证:LLM首先是在来自多个域中的数据混合物上进行的,随后是一个目标域芬特芬特登录。我们的模型极大地胜过许多最先进的基准( + 37%的回忆@1和ndcg@10中的24%),我们的系统消融研究表明,(i)两种固定阶段至关重要,当结合使用时,我们在相反的绩效中获得了相似的绩效,以及(ii)对比的一致性在目标域中有效地探索了我们的实验。
b'摘要 提出了一种毫米波\xe2\x80\x90 低\xe2\x80\x90 轮廓宽带微带天线。为了加宽阻抗带宽并同时实现稳定的大增益,在由同轴探针馈电的微带贴片两侧布置共面寄生贴片阵列。在微带贴片上蚀刻双槽以降低 H \xe2\x80\x90 平面交叉\xe2\x80\x90 极化水平。提出了使用 Floquet \xe2\x80\x90 端口模型进行零\xe2\x80\x90 相位\xe2\x80\x90 反射分析以预测寄生贴片阵列的谐振频率。根据理想探针的输入阻抗来验证激发的谐振模式。依次激励两个相邻的宽边谐振,分别以微带贴片的准 \xe2\x80\x90 TM 10 模式和寄生贴片阵列的准 \xe2\x80\x90 TM 30 模式为主导。所提出的天线尺寸为 1.06 1.06 0.024 \xce\xbb 0 3(\xce\xbb 0 为自由空间中 29 GHz 的波长),在 | S 11 | \xe2\x89\xa4 10 dB 时实现 15%(27\xe2\x80\x93 31.35 GHz)的阻抗带宽。实现的峰值增益高达 9.26 dBi,2 \xe2\x80\x90 dB 增益带宽为 15.7%。 H \xe2\x80\x90 平面交叉 \xe2\x80\x90 极化水平在 3 \xe2\x80\x90 dB 波束宽度内小于 14 dB,背部辐射水平小于 17.9 dB。'