收稿日期: 2022-02-28 ; 修 改稿日期: 2022-03-31 。 基金项目: 北京市科技计划项目( Z201100004520016 )。 第一作者: 李红霞( 1996 —),女,硕士研究生,研究方向为储能优化
智能手机是最适合承载端侧 AI 的载体, AI 手机可提供差异化的用户价 值与品牌价值。智能手机具有保有量大、使用便携、使用场景多、使用 时长久、应用生态系统强大等优势,可创造众多的 AI 使用场景,并加速 第三方 AI 应用成熟,我们认为智能手机将是生成式 AI 最佳的应用载体 之一。 AI 手机的定义具有三个典型特征:①能够在手机端侧运行大模型; ② SoC 中包含 NPU 算力;③达到一定参数要求的性能指标。 AI 手机可提 供差异化的用户价值与品牌价值。对用户而言, AI 手机将是自在交互、 智能随心、专属陪伴、安全可信的个人化助理,使用体验较目前阶段智 能手机大幅提升。对于手机厂商而言,可提供品牌形象与用户粘性。
对侧mRNA covid-19增强抗体的幅度,以改善COVID-19 Vac-scine免疫反应,Fazli等人。的研究检查了在相同或对侧臂中施用助力剂量的影响(9)(图1)。与最近的一些发现(10)相反,当前的研究报告说,在先前使用初次疫苗的人中,辉瑞技术NT162B2促进了抗体反应的高幅度。在第三次疫苗接种后大约五个月后,在最后一个时间点分析了这种差异最为明显。notably,该研究的重点是中和抗体反应,包括针对Omicron变体的反应(B.1.1.529),揭示了具有对侧增强的增强抗体。较高的抗体水平也与改善变异菌株的跨义中和化有关(11),面对不断发展的病毒威胁,解决了至关重要的关注点。该研究的强大方法论涵盖了大型和彻底的参与者入学和人口统计分析,可以增强其发现的可靠性。这项工作为疫苗的优化提供了宝贵的见解
要保护加密实现免受侧通道漏洞的影响,开发人员必须采用恒定的时间编程实践。由于这些可能是错误的,因此已经提出了许多侧通道检测工具。尽管如此,此类漏洞仍在加密库中手动发现。虽然Jancar等人最近的一篇论文。表明,开发人员很少执行侧道通道检测,目前尚不清楚现有的检测工具是否首先会发现这些漏洞。为了回答这个问题,我们调查了文献,以建立34个侧通道检测框架的分类。我们提供的分类比较了多个标准,包括所使用的方法,分析的可扩展性或所考虑的威胁模型。然后,我们在选择了5种有前途的检测工具的选择上建立了代表性Cryp-Graphic操作的统一共同基准。此基准测试使我们能够更好地比较每个工具的功能及其分析的可扩展性。此外,我们还提供了最近发布的侧通道漏洞的分类。然后,我们在基准上测试每个漏洞子集以及它们出现的上下文的每个选定工具。我们发现,由于各种原因,现有的工具可能难以找到脆弱性,主要是缺乏对SIMD指示,隐性流和内部秘密生成的支持。根据我们的发现,我们为研究社区和密码图书馆开发人员开发了一系列建议,其目标是提高侧通道检测工具的有效性。
要保护加密实现免受侧通道漏洞的影响,开发人员必须采用恒定的时间编程实践。由于这些可能是错误的,因此已经提出了许多侧通道检测工具。尽管如此,此类漏洞仍在加密库中手动发现。虽然Jancar等人最近的一篇论文。表明,开发人员很少执行侧道通道检测,目前尚不清楚现有的检测工具是否首先会发现这些漏洞。为了回答这个问题,我们调查了文献,以建立34个侧通道检测框架的分类。我们提供的分类比较了多个标准,包括所使用的方法,分析的可扩展性或所考虑的威胁模型。然后,我们在选择了5种有前途的检测工具的选择上建立了代表性Cryp-Graphic操作的统一共同基准。此基准测试使我们能够更好地比较每个工具的功能及其分析的可扩展性。此外,我们还提供了最近发布的侧通道漏洞的分类。然后,我们在基准上测试每个漏洞子集以及它们出现的上下文的每个选定工具。我们发现,由于各种原因,现有的工具可能难以找到脆弱性,主要是缺乏对SIMD指示,隐性流和内部秘密生成的支持。根据我们的发现,我们为研究社区和密码图书馆开发人员开发了一系列建议,其目标是提高侧通道检测工具的有效性。
2凸式23 2.1基础:压缩感应。。。。。。。。。。。。。。。。。。25 2.1.1凸介:原理。。。。。。。。。。。。。。。。25 2.1.2直觉。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.1.3在有限的等轴测图下保证紧密度。。。。。29 2.2低级矩阵恢复。。。。。。。。。。。。。。。。。。。。30 2.2.1凸质:原理。。。。。。。。。。。。。。。。。。。。31 2.2.2在受限的等轴测图下保证紧密度。33 2.2.3没有限制等轴测的问题。。。。。。。。。。35 2.3超分辨率。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.3.1通过总变化规范进行凸介。 。 。 40 2.3.2无限制的等轴测特性。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.3.3通过双证书正确性。 。 。 。 。 。 。 。 。 。 。 。 。 4440 2.3.1通过总变化规范进行凸介。。。40 2.3.2无限制的等轴测特性。。。。。。。。。。。。。43 2.3.3通过双证书正确性。。。。。。。。。。。。。44
我们引入了一个新的量子 R'enyi 散度 D # α,其中 α ∈ (1 , ∞ ) 以凸优化程序定义。此散度具有多种理想的计算和操作特性,例如状态和通道的高效半正定规划表示,以及链式法则特性。这种新散度的一个重要特性是它的正则化等于夹层(也称为最小)量子 R'enyi 散度。这使我们能够证明几个结果。首先,我们使用它来获得当 α > 1 时量子通道之间正则化夹层 α -R'enyi 散度的上界的收敛层次。其次,它使我们能够证明当 α > 1 时夹层 α -R'enyi 散度的链式法则特性,我们用它来表征通道鉴别的强逆指数。最后,它使我们能够获得量子通道容量的改进界限。
贡献。在本文中,我们系统地研究了近似凸函数优化的量子算法,并将其应用于零阶随机凸老虎机。量子计算是一项快速发展的技术,量子计算机的能力正在急剧提升,最近谷歌 [ 6 ] 和中国科学技术大学 [ 42 ] 已经达到了“量子至上”。在优化理论中,半定规划 [ 3 , 4 , 11 , 12 ]、一般凸优化 [ 5 , 15 ]、优化中的脱离鞍点问题 [ 41 ] 等问题的量子优势已被证明。然而,据我们所知,近似凸优化和随机凸优化的量子算法是广泛开放的。在本文中,我们使用量子零阶评估预言机 OF 来考虑这些问题,这是先前量子计算文献中使用的标准模型 [ 5 , 14 , 15 , 41 ]:
在随机环境中涉及顺序决策的优化问题。在这本专着中,我们主要集中于SP和SOC建模方法。在这些框架中,存在自然情况,当被考虑的问题是凸。顺序优化的经典方法基于动态编程。它具有所谓的“维度诅咒”的问题,因为它的计算复杂性相对于状态变量的维度呈指数增长。解决凸多阶段随机问题的最新进展是基于切割动态编程方程的成本为go(值)函数的平面近似。在动态设置中切割平面类型算法是该专着的主要主题之一。我们还讨论了应用于多阶段随机优化问题的随机临界类型方法。从计算复杂性的角度来看,这两种方法似乎相互融合。切割平面类型方法可以处理大量阶段的多阶段问题
量子计算的一个基本模型是可编程量子门阵列。这是一种量子处理器,由程序状态提供信息,该程序状态会在输入状态上引发相应的量子操作。虽然可编程,但已知该模型的任何有限维设计都是非通用的,这意味着处理器无法完美模拟输入上的任意量子通道。表征模拟的接近程度并找到最佳程序状态在过去 20 年里一直是悬而未决的问题。在这里,我们通过展示寻找最佳程序状态是一个凸优化问题来回答这些问题,该问题可以通过机器学习中常用的半有限规划和基于梯度的方法来解决。我们将这个一般结果应用于不同类型的处理器,从基于量子隐形传态的浅层设计到依赖于基于端口的隐形传态和参数量子电路的更深层方案。