椭圆曲线密码学(ECC)由于其效率和高安全性水平,即使钥匙较小,因此已经成为现代密码学的强大工具。引入蒙哥马利阶梯算法,通过提供一种安全标量乘法的方法来抵抗侧向通道攻击,这是加密实现中常见的漏洞,从而进一步提高了ECC的安全性和效率。本文表明,蒙哥马利阶梯算法为需要高安全性的应用提供了一个强大的解决方案,尤其是在抵抗侧向通道攻击的环境中。通过比较分析,很明显,蒙哥马利阶梯算法虽然更复杂,但在安全的加密操作方面具有很大的优势,这使其成为基于ECC的系统发展的关键组成部分。
已提交一份日期为 2017 年 9 月 28 日的报告。Nicoll 委员提议,Fenton 委员附议,哈利法克斯地区水务委员会董事会:1. 批准制定私人侧向更换援助计划 (PLRAP) 的概念,以帮助客户完全更换本报告中所述的私人部分供水、废水或雨水服务侧向管道,前提是更换符合公用事业目标。2. 批准向 NSUARB 提交的提案,以颁布本报告中所述的 HRWC 规则和条例的授权修正案。3. 在获得必要的批准后,在拟议的 2018/19 年非管制预算中反映新计划,以便于 2018 年 4 月 1 日实施。动议已提出并通过。7. 费率可负担性和 H2O 计划增强
动机:火星表面的大部分都被灰尘贴面所覆盖[1]。高反照率表面通常被解释为厚度2米的灰尘(2-40 µm)颗粒覆盖,而深色特征通常被认为具有较低的灰尘盖,但主要由沉积物组成,而不是基岩[2,3]。这些解释在热发射光谱仪(TES)仪器分辨率上,这意味着基岩跨度很少3 km,没有某些沉积物盖。在感兴趣的区域内发生的侧向异质性已显示导致热惯性的昼夜变化[4]。 此外,明显热惯性的季节变化可能是由于更深的渗透深度和垂直异质性(例如灰尘覆盖)引起的[5]。在感兴趣的区域内发生的侧向异质性已显示导致热惯性的昼夜变化[4]。此外,明显热惯性的季节变化可能是由于更深的渗透深度和垂直异质性(例如灰尘覆盖)引起的[5]。
摘要Heliothine moths的信息素系统是研究高阶嗅觉处理基础原理的最佳模型。在Helicoverpa Armigera中,三个男性特异性肾小球接收到有关三个女性产生的信号的输入,即主要的信息素分量,作为吸引力剂和两个次要组成部分,具有双重功能,即吸引力与吸引吸引力的抑制作用。通过触角肾小球,通过三个主要路径传达信息,包括侧向脑部,包括侧向杂脑 - 内侧道是最突出的路径。在这项研究中,我们从三个男性特异性肾小球中的每个中的每个中都追踪了生理上鉴定的内侧投射神经元,目的是将其末端分支映射在侧面的原脑脑中。我们的数据表明,神经元的广泛投影是根据行为意义组织的,包括代表吸引力与抑制的信号的空间分离 - 但是,基于次要组件的数量,具有独特的切换行为后果的能力。
摘要:记录具有小型单层积分放大器的神经信号在研究以及商业应用中都具有很高的兴趣,在商业应用中,通常可以并行获取100个或更多通道。本文回顾了基于CMOS技术(包括侧向双极器件)的低噪声生物医学扩增器设计的最新发展。根据其噪声效率因子(NEF),输入引用的绝对噪声,电流消耗和面积,对七个主要电路拓扑类别进行了识别和分析。观察到较低的NEF的历史趋势,而绝对噪声功率和电流消耗在超过五个数量级以上表现出广泛的趋势。通过晶体管级的模拟和从180 nm和350 nm CMOS技术制造的五个不同的原型设计进行测量,检查了侧向双极晶体管作为放大输入设备的性能。最低测量的噪声曲线为9.9 NV/√Hz,偏置电流为10 µ,导致NEF为1.2。
裂缝密封、修补、表面处理、路肩切割和侧向推土等活动;除了通过更换管道保持排水系统正常运转外,冲洗和沟渠清理也是维护业务模式的关键组成部分。这些活动确保我们有效地管理和保护我们的资产,同时也投入资源进行系统改进。
目的:单侧中风的患者通常显示出半剧位的疏忽或较温和的对比性视觉缺陷,但在空间上也有非上侧面化的视觉缺陷。本研究的目的是比较左右半球中风患者的空间偏侧(即相反)和非外边(即一般)视觉缺陷。方法:参与者包括左半球(LH组,n = 20)或右半球(RH组,n = 20)和20个健康对照组的40例慢性单侧中风患者。为了评估对侧缺陷,我们使用了传统的纸笔取消任务(铃铛测试)和侧向目标计算机任务。为了评估非外边缺陷,我们开发了一种新型的大屏幕(173×277厘米)的计算机方法,即“球雨”任务,具有移动的视觉刺激和快节奏的要求,以选择性注意。结果:根据取消任务,没有相反的视觉缺陷。然而,在侧向目标计算机任务中,在双边试验中,RH患者比右侧目标更明显地错过了左侧。这种遗漏分布与对照和LH患者的遗漏分布有显着不同。在评估非侧向注意力的评估中,RH和LH患者的球降雨目标明显超过左侧和右半野对照。结论:基于计算机的评估敏感地揭示了单侧中风中视觉障碍的各个方面。右半球中风的患者表现出非外边的视觉不引起注意力。在右半球中风中,这些症状可能伴随着微妙的对比视觉缺陷,这些缺陷在取消任务中尚未引起人们的注意。
摘要 - Crystals-kyber已被NIST标准化为唯一的密钥包裹机制(KEM)方案,以承受大规模量子计算机的攻击。但是,仍需要对即将到来的迁移进行充分考虑侧向通道攻击(SCA)。在此简介中,我们通过合并一种新颖的紧凑型洗牌建筑,为Kyber提出了安全有效的硬件。首先,我们修改了Fisher-Yates的散装,以使其更适合硬件。然后,我们为众所周知的开源kyber硬件实现设计了优化的洗牌架构,以增强所有已知和潜在的侧向通道泄漏点的安全性。最后,我们在FPGA上实施了经过修改的Kyber设计,并评估其安全性和性能。通过在硬件上进行相关能力分析(CPA)和测试向量泄漏评估(TVLA)来验证安全性。与此同时,FPGA位置和路由结果表明,与原始的未保护版本相比,建议的设计仅报告了硬件效率的8.7%降解,比现有的硬件隐藏方案要好得多。