大于 0.1 m,无论是平面化还是未平面化的测试 µ 芯片。凸块侧壁略微倾斜,因此凸块的平面化会略微增加凸块面积,见表 2。平面化工艺似乎还会使软金凸块略微变脏,见图 4。平面化凸块的凸块面积比未平面化凸块大 5% 到 15%。
本文研究了标准双人雪橇的空气动力学行为。在 50% 比例的双人雪橇模型上进行了风洞实验。使用羊毛束和烟雾来可视化雪橇周围的气流特性。发现空气通过多条路径进入雪橇腔体。结果表明,保险杠(特别是后保险杠)的优化对于减少气动阻力效果不显著。因此,通过改变鼻子的大小和形状以及侧壁曲率可以获得更好的气动性能。© 2013 由 Elsevier Ltd. 出版。由 RMIT 大学负责选择和同行评审 关键词:雪橇;空气动力学;阻力;气流;实验;风洞,FIBT。
晶圆加工技术的趋势要求晶圆载体技术不断进步,以支持当今先进的半导体加工设施。我们的 198/192 系列 200 毫米晶圆运输载体可满足当今 200 毫米晶圆厂的自动化、污染控制和生产力要求。这些开放式侧壁晶圆载体专为先进的晶圆运输而设计,与传统的中低端晶圆载体相比,具有显著的性能优势,包括精确的晶圆存取、可靠的设备操作和安全的晶圆保护。
摘要 为了将利用电子束光刻技术制作的抗蚀剂图案应用于纳米压印模具,不仅需要考虑从曝光顶面二维观察到的线宽和孔径,还需要考虑包括抗蚀剂横截面形状在内的三维情况。在本研究中,我们关注图案内部的剂量分布和显影时间,并研究它们对抗蚀剂横截面形状的影响。采用曝光方法制作线宽为 100nm 的抗蚀剂图案,其中一条线内的总剂量相同,但一条线内的电子束扫描位置和次数会发生变化。通过电子散射模拟分析的剂量分布与解析后的图案侧壁形状之间的比较结果表明,在特定条件下,剂量分布和实际的抗蚀剂形状在 ±5nm 精度内相互一致。结果表明,即使整个图案的平均剂量相同,抗蚀剂侧壁的实际形状也会因取决于扫描位置和扫描次数的抗蚀剂中的局部剂量分布而改变。此外,我们通过观察不同显影时间下曝光后的抗蚀剂的显影过程,研究了抗蚀剂的分辨机理。结果表明,图案内部剂量的差异引起的显影速度差异对抗蚀剂的截面形状产生影响。本研究结果表明,抗蚀剂内部剂量分布和由此引起的显影速度差异对抗蚀剂截面形状有显著影响,这些参数有望在未来应用于所需截面形状的制作。
摘要。在我国的隧道项目建设过程中,有许多越野喀斯特地区的情况。对喀斯特地区异常地质体的高级检测对于确保隧道建设的安全至关重要。本文以Guizhou Provonce Expressway项目-Xinjie Tunnel为例。通过研究新泽隧道的总体喀斯特状况,解释了地面穿透性雷达检测和隧道检测原理的基本原理。实际例子解释了侧壁和小目标的检测方法和效果。对隧道建设中可能遇到的异常地质体的高级检测,并试图避免隧道建设过程中可能的地质灾难,对于为隧道建设的安全提供保证非常重要。
由于对集成的光电电路的需求日益增长和较高的光学通信带宽,光学解体器在电信行业的全光设备中具有很大的潜力[1]。对数据速率的越来越多的需求激发了对多重技术的需求[2]。可以使用以下技术方法来创建光学反复传动器:Y分支设备[3,4],Mach-Zehnder干涉仪(MZI)[5],燃烧的波导侧壁光栅[6]和多模层干扰(MMI)COUPLERS [7,8]。为了提高数据传输比特率,波长多路复用(WDM)是广泛使用的技术之一[1]。通过减少峰值波长之间的距离,可以利用更多的通道来利用单个光谱带。
ECG。 将六个电极放在胸部(前铅)上,四肢(肢体导线);随后在水平和额叶平面上均可进行电子活动。 5胸部导致在水平面上描绘电活动,肢体导致描绘额面上的活性。 适当的电极定位是不可能的,无法准确描绘电活动和随后的正确解释。 胸部导线通过V6标记为V1(V代表“电压”)。 通过V4引导V1从前表面观察心脏活动。 v1和v2查看室内隔膜和右心室的电动激活。 中间隔膜是分隔左心室和右心室的心脏组织壁。 6 V3和V4视图活动从左心室的前壁; V5和V6从左心室的下前外侧壁测量活性(请参见胸部铅)。 7ECG。将六个电极放在胸部(前铅)上,四肢(肢体导线);随后在水平和额叶平面上均可进行电子活动。5胸部导致在水平面上描绘电活动,肢体导致描绘额面上的活性。适当的电极定位是不可能的,无法准确描绘电活动和随后的正确解释。胸部导线通过V6标记为V1(V代表“电压”)。通过V4引导V1从前表面观察心脏活动。v1和v2查看室内隔膜和右心室的电动激活。中间隔膜是分隔左心室和右心室的心脏组织壁。6 V3和V4视图活动从左心室的前壁; V5和V6从左心室的下前外侧壁测量活性(请参见胸部铅)。7
升级后的 King Air 260 涡轮螺旋桨飞机拥有完全重新设计的客舱,包括重新设计的橱柜、重新雕刻的侧壁、新的座椅设计,甚至还有照明杯架。从五种新的内饰方案中进行选择,享受精心设计的客舱,以满足您的风格。改造后的茶点中心提供零食和饮料空间,方便乘客和飞行员取用。与之前的型号相比,两个面向后方的座椅增加了近六英寸的腿部空间,俱乐部座椅增加了两英寸的腿部空间,乘客可以放松身心。专用的安全带盥洗室空间设有门,以提供隐私,并设有起飞和降落座椅。
为了实现航空工业的精确气动声学测量,对主要用于气动测试的低速风洞进行了改造,以提供更低的背景噪声环境。根据风洞不同位置的单个麦克风的数据和测试段内的麦克风相控阵测量结果,确定了主要噪声源,并实施了可行的替代方案来降低背景噪声,例如在驱动系统上游安装新的经过声学处理的角叶片和侧壁衬里。还研究了测试段的声学透明概念,结果显示风洞的进一步改进很有希望。给出了风洞不同位置的单个麦克风测量结果以及测试段内波束形成阵列的声压级结果。改进前后的背景噪声测量证实,气动声学测试的能力显著提高,测试段内的噪声降低了 5 dB。
本文介绍了如何对散射测量进行不确定性分析。概述了一种通过最小二乘回归传播不确定性的方法。该方法包括测量噪声的传播以及测量中系统效应的估计。由于测量确定的各种参数之间可能存在相关性,因此描述了一种可视化提取轮廓中不确定性的方法。分析针对 120 nm 间距光栅进行,该光栅由 120 nm 高、45 nm 临界尺寸和 88 ◦ 侧壁角的光刻胶线组成,使用光谱旋转补偿器椭偏仪测量。结果表明,虽然散射测量非常精确,但有许多系统误差源限制了其绝对精度。解决这些系统误差可能会显著改善未来的散射测量。