GTEM电池是一种锥形的杂种终止50欧姆条带装置,用于辐射排放和电子设备的免疫测试。这不是一个替代品,但由于其大小和成本,它是态室内测量的方便替代品。一个GTEM电池由隔膜组成,中间的导电带和连接到地面的墙壁。几何形状旨在呈现50Ω条线。测试的设备(DUT)放在底壁和隔膜之间。TBGTC1是一个“开放式GTEM单元”,没有侧壁,可方便地放置DUT和优选的垂直配置。它可能会拾取RF背景噪声,但是可以通过对DUT供电或将GTEM-Cell放在屏蔽帐篷中之前对电池输出信号进行测量来考虑,这也可以从Tekbox获得。
房间的形状(尤其是侧壁)会影响扬声器的性能,设置期间的正确校准对于获得最佳音效至关重要。传统校准需要有线麦克风和复杂的设置。JBL Bar 300 设计有嵌入式麦克风,用于声音校准,确保您无论在什么样的房间中都能轻松获得最佳音效。系统收集声学信息,测量声音反射到麦克风的时间。每个反射在不同的时间到达麦克风,然后分析所有反射。重建反射以估计您特定空间中的环绕声性能。声音校准使用一组滤波器来校正扬声器均衡器,以确保声音性能一致,无论您所在的房间形状或大小如何,都能提供出色的环绕声。连接性
硅通孔技术是一种有前途的、可优先实现三维集成电路(3-D IC)可靠互连的方法,可将多个芯片的热量沿垂直方向传递到热沉。本文提出了一种新的硅通孔(TSV)通用模型来研究3-D IC的热性能。首次研究了锥环TSV的传热特性。详细比较和分析了不同侧壁倾角和TSV绝缘层厚度对3-D IC散热的影响。正如预期的那样,我们提出的模型与现有模型的结果一致性很好,这表明考虑横向传热和TSV结构的模型可以更有效、更准确地预测温度分布。此外,研究发现锥环TSV具有更优异的散热性能。关键词 : 3-D集成电路,解析热模型,
Denoth 雪水仪是一种电子设备,可在 20 MHz 下测量雪的介电常数的实部。通过雪水和密度的经验关系可以计算出雪体积湿度(Denoth,1989)。必须单独测量密度才能输入到方程中。这是使用 100 cm3 矩形盒式切割器完成的,并在电子秤上称量样品。这些测量是在雪块的侧壁进行的,图 2 和 3 CRREL 库存中有五台 Denoth 仪表。在实验室环境中,每台都用于检查它们当前的准确性和相互校准?两台 Denoth 仪表可供现场使用。一台属于 CRREL,另一台属于另一个机构。距离地面 5cm 以内的测量值会受到下层表面介电特性的影响,应谨慎解释。
SU-8 3000 是一种高对比度、环氧基光刻胶,专为微加工和其他微电子应用而设计,这些应用需要厚的、化学和热稳定的图像。SU-8 3000 是 SU-8 和 SU-8 2000 的改进配方,多年来一直被 MEMS 生产商广泛使用。SU-8 3000 的配方可提高附着力并降低涂层应力。SU-8 3000 的粘度范围允许单层涂层的薄膜厚度为 4 至 100 μm。SU-8 3000 具有出色的成像特性,能够产生非常高的纵横比结构,超过 5:1。SU-8 3000 在 360 nm 以上具有非常高的光透射率,这使其非常适合在非常厚的薄膜中对近垂直侧壁进行成像。SU-8 3000 最适合在设备上成像、固化和保留的永久性应用。
介绍了一种用于在纳米表面结构上制造 TiN 纳米结构的电感耦合等离子蚀刻工艺。使用 Cl 2 /Ar/N 2 等离子体,在 SiO 2 上可实现 50 的选择性。研究了 N 2 流速对蚀刻速率和 TiN 侧壁上非挥发性残留物的影响。当 N 2 流速增加到 50 sccm 时,观察到 TiN 侧壁上非挥发性残留物的沉积发生变化。介绍了用 TiN 纳米结构侧壁制造的 TiN 器件的电流密度-电压特性。分别用低和高 N 2 流速蚀刻的两个不同样品的测量电流密度表明,仅在低 N 2 流速下,清洁后才会在侧壁上沉积一层绝缘层。VC 2015 美国真空学会。 [http://dx.doi.org/10.1116/1.4936885]
咽咽功能不全是根据言语病理学家的正式评估来诊断的。诊断既涉及感知语音评估,又涉及咽咽功能的动态评估。通过鼻腔内镜检查进行了咽咽功能的动态评估,该功能可以直接可视化尾咽括约肌闭合。观察到的尾咽闭合模式又可以用来指导算法方法选择手术技术。2–6传统上,对于冠状闭合模式,粘膜移动良好,但咽壁效果不佳,括约肌咽部成形术是为了保留现有的pa骨移动性的努力。相反,对于矢状或圆形闭合图案,侧壁移动良好,但绒毛效率不佳,咽瓣受到青睐,以保留现有的横向壁迁移率。
图1:Linbo 3元图操作原理和几何形状。a)在元时间播放中播放的差异机制的草图。在角度频率ω处的泵撞击了linbo 3纳米圆柱上的泵,该泵从基板侧碰撞。在角频率2Ω下生成的Sh从零差顺序中删除,并归因于第一个差异顺序,这要归功于单个纳米柱的发射模式之间的干扰。b)直径为15 µm的已实现的跨膜的电子显微镜图像。 c)纳米圆柱的变焦,显示了在过程结束时获得的约80°侧壁倾斜度和顶部。每个纳米氏菌的基本半径为175 nm,高度为420 nm,阵列p为590 nm。元表面位于XY笛卡尔平面,沿Z的Linbo 3的非凡轴。
摘要:单片高对比度光栅 (MHCG) 由单片层中图案化的一维光栅组成,可提供高达 100% 的光功率反射率,并且可以在现代光电子学中使用的几乎任何半导体和介电材料中制造。MHCG 可实现单片集成、偏振选择性和多功能相位调谐。它们可以比分布式布拉格反射器薄 10 到 20 倍。MHCG 的亚波长尺寸大大降低了确保 MHCG 条纹侧壁光滑度的可能性,并使在蚀刻过程中精确控制 MHCG 条纹横截面的形状变得困难。问题在于,改进蚀刻方法以获得设计所假设的完美横截面形状是否更有利,或者是否有可能使用给定蚀刻方法提供的形状找到能够实现高光功率反射的几何参数。在这里,我们进行了一项数值研究,该研究由使用多种常见的表面纳米级成型方法在不同材料中制造的 MHCG 的实验表征支持。我们证明具有任意横截面形状的 MHCG 条纹都可以提供接近 100% 的光功率反射率,这大大放宽了它们的制造要求。此外,我们表明,对于准梯形横截面的 MHCG,可以实现超过 99% 的光功率反射率和超过 20% 的创纪录光谱带宽。我们还表明,如果波纹幅度小于 MHCG 周期的 16%,MHCG 条纹的侧壁波纹对 MHCG 光功率反射的影响很小。使用最新的表面蚀刻方法可以实现这种条纹制造精度。我们的研究结果对于设计和生产采用 MHCG 的各种光子器件具有重要意义。横截面形状的灵活性有利于可靠地制造高反射率亚波长光栅镜。这反过来又将使制造单片集成的高品质因数光学微纳腔器件成为可能。关键词:单片高对比度光栅、亚波长光栅、光功率反射