鉴于其广泛的应用,包括在纤维剪接,捆绑式风扇中/扇出,模式耦合,编写光栅和光纤绘制的情况下,必须准确了解多核纤维(MCF)的内部核心分布(MCFS)。然而,由于测量精度决定了产品的性能,因此可用于精确测量纤维核心分布的有限方法的广泛使用受到限制。在这项研究中,提出了基于贝塞尔束照明的侧视图和非破坏性方案,用于测量七核纤维的内部核心分布。贝塞尔束在散射介质中提供较大的焦距,并在具有空间变化的折射率变化的外轴介质中传播时表现出独特的图案。结果表明,在贝塞尔梁的情况下,较长的焦距和独特的模式会影响图像对比,这与典型的高斯梁不同。此外,使用数字相关方法证明了基于贝塞尔束的七纤维核心分布的高精度测量。一种深度学习方法用于将测量精度提高到0.2°,精度为96.8%。所提出的侧视图基于贝塞尔束的方法具有处理更复杂的MCF和光子晶体纤维的潜力。
图 1. (a) 单层 (1L) MoSe 2 和 ReS 2 晶体结构。上图显示晶体结构的侧视图,下图显示晶体结构的顶视图。侧视图显示了这些层状材料上偶极子平面内取向的示意图。(b) 样品 1 (S1) 的 ReS 2 -MoSe 2 异质结构的光学图像。插图是样品侧视图的示意图。(c) MoSe 2 、ReS 2 和 HS 区域的拉曼光谱。HS 拉曼光谱由来自各个 1L 区域的不同振动模式组成。(d) 在透明蓝宝石基板上制作的类似异质结构的三个不同区域的吸收光谱数据(样品 2,S2)。MoSe 2 A 和 B 激子峰清晰可见,ReS 2 较低能量吸收峰用箭头标记。HS 光谱由两个 1L 区域的峰组成。
图1。(a)单层(1L)Mose 2和Res 2晶体结构。顶部面板显示侧视图,底部面板显示了晶体结构的顶视图。侧视图显示了这些分层材料中偶极子的面内方向的示意图。(b)样品1(S1)的Res 2 -Mose 2异质结构的光学图像。插图是样本侧视图的示意图。(c)来自Mose 2,Res 2和HS区域的拉曼光谱。HS拉曼光谱由单个1L区域的不同振动模式组成。(d)在透明蓝宝石基板上制成的类似异质结构的三个不同区域的吸收光谱数据(样品2,S2)。Mose 2 A和B兴奋峰清晰可见,RES 2用箭头标记较低的能量吸收峰。HS光谱由两个1L区域的峰组成。
图 3 掺杂调控 vdW 异质结理论研究典型成果( a )结构优化后的 C 、 N 空位及 B 、 C 、 P 、 S 原子掺杂 g-C 3 N 4 /WSe 2 异质结 的俯视图 [56] ;( b )图( a )中六种结构的能带结构图 [56] ;( c )掺杂的异质结模型图、本征 graphene/MoS 2 异质结的能带结 构及 F 掺杂 graphene/ MoS 2 异质结的能带结构 [57] ;( d ) Nb 掺杂 MoS 2 原子结构的俯视图和侧视图以及 MoS 2 和 Nb 掺杂
图。1。钢琴弹奏任务设置。(a)SR3T的顶视图渲染,显示水平运动DOF和相关电动机。(b)SR3T的侧视图渲染,显示垂直运动DOF和相关电动机。(c)第一度自由度(DOF)的SR3T控制界面的顶视图渲染;参与者使用其右脚通过脚在脚上的惯性测量单元(IMU)捕获SR3T的运动。(d)第二DOF的SR3T控制接口的侧视图渲染。(e)在球体上投射的人拇指终点的工作表面与(f)(f)在球体上投射的SR3T端点的工作表面进行比较 - 增强人类的工作表面范围(请参阅方法)。(g,h)无约束的飞行员实验的顶部和侧视图:一位经验丰富的钢琴演奏者在佩戴和使用SR3T时自由锻炼钢琴,在使用后的1小时内有效地弹奏11个指钢琴。(i)系统实验:使用右手的5个手指加上左手食指(LHIF)和(J)使用SR3T弹奏序列。(k)参与者使用SR3T扮演在其前面显示器上显示的音符顺序。
图 12 Conair 投放系统 b 的投放控制(Conair 投放编号 3)........................................................ 17 图 13 Simplex 投放系统的投放控制(Simplex 投放编号 3)........................................................ 18 图 14 Simplex 投放系统的投放流侧视图......................................................................................... 20 图 15 Conair 投放系统的投放流侧视图......................................................................................... 20 图 16 Simplex 投放系统的投放控制前视图......................................................................................... 22 图 17 Conair 投放系统的投放控制前视图......................................................................................... 22 图 18 Simplex Model 304 Fire Attack 腹舱的假定撤离过程............................................................. 25 图 19 Conair 腹舱的假定撤离过程......................................................................................... 25
图 16. 日照总辐射计的顶视图。......................................................................................22 图 17. 日照总辐射计的横截面图。..............................................................................22 图 18. 显示两个电缆连接器位置的侧视图.........................................................................................23 图 19. 显示干燥剂罐湿度指示窗位置的侧视图.........................................................................23 图 20. 干燥剂罐上湿度指示窗的特写。数字表示 30% 和 50% 相对湿度 (RH)。.............................................................................24 图 21. 安装在 TIS 塔顶的日照总辐射计。.............................................................................24 图 22. 生物温度传感器侧面概览照片.........................................................................................26 图 23. 标准生物温度传感器背面概览照片.............................................................................27 图 24. 土壤地块和 ML1 生物温度传感器背面概览照片。 ....................27 图 25. 生物温度传感器的正面视图.......................................................................28 图 26. 生物温度传感器的正面视图..............................................................................28 图 27. 生物温度传感器和辐射屏蔽尺寸................................................
步态障碍是帕金森氏病(PD)患者最常见的症状之一,与临床不良结局密切相关。最近,基于视频的人类姿势估计(HPE)技术吸引了与基于标记基于标记的3D运动捕获系统更便宜,更简单的方法进行步态分析的方法。然而,尚不清楚基于视频的HPE是否是测量PD患者的临时和运动步态参数的可行方法,以及该功能如何随相机位置而变化。在这项研究中,使用运动捕获系统和两个智能手机摄像机测量了24例早期PD患者的跑步机和地面步行,并放置在受试者的近额和外侧侧面。我们比较了从3D运动捕获系统和无标记的HPE获得的关节位置数据之间的暂时步态参数和运动学特征的差异。我们的结果证实了使用HPE的PD患者的Ana-lyzing步态的可行性。尽管脚后跟和脚趾清晰可见的近额外视图对于估计时间步态参数有效,但横向视图特别适合评估空间步态参数和关节角度。,在侧面记录不可行的临床环境中,近额外的视图记录仍然可以作为运动捕获系统的实际替代方法。
图 1:单层结构,(ab) 碘化铅-PbI 2 ,(cd) 氧化铅 PbO ,(ef) 氧化锡 SnO ,(gh) 硫化铟-InS ,(ij) 硒化铟-InSe ,分别为顶视图和透视侧视图。(k) PbO 和 SnO ,(l) PbI 2 ,InS 和 InSe 的第一布里渊区路径。原子颜色代码:黑色=Pb,紫色=I,红色=O,浅蓝/灰色=Sn,浅粉色=In,黄色=S,绿色=Se