作者地址:任晓旭,xiaoxuren@tju.edu.cn,天津大学智能与计算学院,天津,中国,300072;徐敏瑞,minrui001@e.ntu.edu.sg;Dusit Niyato,dniyato@ntu.edu.sg,南洋理工大学计算机科学与工程学院,新加坡,新加坡,639798;康佳文,kavinkang@gdut.edu.cn,广东工业大学自动化学院,广州,中国,510006;熊泽辉,zehui_xiong@sutd.edu.sg,新加坡科技设计大学信息系统技术与设计支柱学院,新加坡,新加坡,487372;邱超,chao.qiu@tju.edu.cn;王晓飞,xiaofeiwang@tju.edu.cn,天津大学智能与计算学院,天津,300072。
2024年上半年,本集團收益為982.3百万美元,较2023年上半年的1,223.8百万美元減少19.7%。來自中國風電項目的收益為357.2百万美元,较2023年上半年的385.2百万美元減少7.3%,主要由於發電量減少所致。來自韩国項目的收益為461.3百万美元,较2023年上半年的677.7百万美元減少31.9%,主要由於韩国氣電項目的電價及發電量均減少所致。
查尔斯·休伯特(Charles Hubert)1,国际大实验室,丹尼尔·伯曼(Daniel Birman),安妮·K·苏克兰(Anne K Surchland)8,杨丹9,埃里克·埃吉·侯赛斯(Eric Ej Husser)7,Sounds B Miska 12,Thomas D Men-Flogel 12,Jean-Paul圣诞节4,Kai Nylund 5,Kai Nylund 5,Pan-Vazquez的Alegenro; Paninski 16,乔纳森枕头10; Yanliang Shi 11,Noam Roth 5,Michael Shitner 1 Carolina Z Socha 7,Steven Jon West 12,Anthony Zador 10,Anthony Zador 14,Peter Dayan 13,Alexander
本身,因此可能会产生严重的影响,包括许多物种的扩展因此,从保护生物多样性的角度来看,这已成为一个主要的挑战,以防止全球变暖从国际的角度来看,生物多样性受到了极大的损害,包括减少森林和退化,以及由于过度捕捞而导致的海洋生物资源的减少。考虑到日本的经济和社会正处于国际近距离的密切相互依存状态,因此重要的是,日本在国际社会中发挥主要作用,以确保生物学多样性。
第 6662(j) 条。因未披露外国金融资产少报而导致的少缴税款可能会受到处罚。任何纳税年度的“未披露外国金融资产”一词包括未提供所需信息的任何资产。“未披露外国金融资产少报”是指任何纳税年度中,该纳税年度的少缴税款中可归因于任何涉及未披露外国金融资产的交易的部分。如果纳税人能够证明未遵守规定是由于该部分少缴税款的合理原因,并且纳税人对该部分少缴税款采取了善意行动,则不会对任何部分少缴税款处以罚款。有关更多信息,请参阅第 6662(j) 条和第 6664(c) 条。
李振辉博士 (Jessie) 目前担任位于中国杭州的非营利机构云栖工程院的首席科学家。在此之前,她曾担任宾夕法尼亚州立大学的终身副教授。她在伊利诺伊大学香槟分校获得计算机科学博士学位,在上海交通大学获得学士学位。她的研究主要致力于推进计算技术,以释放数据在跨学科研究方面的潜力,特别注重城市应用。李博士于 2017 年获得 NSF 研究奖,并于 2017-2020 年担任宾夕法尼亚州立大学 Haile Family 早期职业教授。
罗云汉 b,d, * 杨仁强 e 和侯林涛 a, * a 暨南大学物理与光学工程学院,广东省真空镀膜技术与新能源材料工程技术研究中心,广州市真空镀膜技术与新能源材料重点实验室,广州,中国 b 暨南大学物理与光学工程学院,广东省光纤传感与通信重点实验室,广州,中国 c 郑州大学物理与微电子学院,材料物理教育部重点实验室,郑州,中国 d 暨南大学,广东普通高校光电信息与传感技术重点实验室,广州,中国 e 江汉大学,光电材料与技术学院,光电化学材料与器件教育部重点实验室,武汉,中国
葛先辉教授2006年于中国科学院上海天文台获博士学位。2006年至2008年在韩国亚太理论物理中心从事博士后研究。2008年至今在上海大学物理系工作,现担任系主任。其研究主要集中于引力与宇宙学、AdS/CFT对应、黑洞物理和强耦合量子多体系统。致力于强耦合量子输运中的规范引力对偶、黑洞信息丢失问题和量子多体SYK(Sachdev-Ye-Kitaev)模型的研究。 ————————————-
摘要本文重点介绍了带通(BP)负数组延迟(NGD)功能的时间域分析。创新的NGD调查基于“ lill” - 形状被动微带电路的创新拓扑的时域实验。描述了特定微带形状构成的概念证明(POC)的设计原理。NGD电路的灵感来自最近分布的“ Li” - 拓扑。在时间域调查之前,研究了所研究电路的BP NGD规格是学术上定义的。作为基本定义的实际应用,本文的第一部分介绍了“ lill” - 电路的频域验证。POC电路是由2.31 GHz NGD中心频率和27 MHz NGD带宽的-8 NS NGD值指定的。“ Lill” - 电路的衰减损失约为-6。在NGD中心频率下 2 dB。 然后,用测得的S-参数的Touchstone数据代表的“ Lill”的两端子黑框模型被用于瞬态模拟。 测得的组延迟(GD)说明了测试的“ lill” - 电路在NGD方面作为BP函数,NGD等于-8。 在NGD中心频率处为1 ns。 使用高斯脉冲调节正弦载波进行BP NGD函数的时间域演示。 可以解释具有同时绘制良好同步输入和输出信号的创新实验设置。 可以观察到,正弦载波不超出NGD波段时,输出信号会延迟。2 dB。然后,用测得的S-参数的Touchstone数据代表的“ Lill”的两端子黑框模型被用于瞬态模拟。测得的组延迟(GD)说明了测试的“ lill” - 电路在NGD方面作为BP函数,NGD等于-8。在NGD中心频率处为1 ns。使用高斯脉冲调节正弦载波进行BP NGD函数的时间域演示。可以解释具有同时绘制良好同步输入和输出信号的创新实验设置。可以观察到,正弦载波不超出NGD波段时,输出信号会延迟。通过使用具有27 MHz频率带宽的高斯向上转换的脉冲,使用测量的“ Lill”电路的Touchstone S-参数从商业工具模拟中理解了BP NGD时间域响应。但是,当将载体调谐为大约等于2.31 GHz NGD中心频率时,输出信号包络线在大约-8 ns中。确认BP NGD响应的时间域典型行为,在测试期间考虑了具有高斯波形的输入脉冲信号。但是,必须在NGD带宽的功能中确定输入信号频谱。在测试后,与输入相比,测量的输出信号信封显示前缘,后边缘和时间效率的峰值。当前可行性研究的结果开放了BP NGD功能的潜在微波通信应用,特别是对于使用ISM和IEEE 802.11标准运行的系统。