execepecte s ummary对一个世纪的科学询问的全面综述阐明了作弊草(Bromus tectorum)入侵的原因和后果,并评估了解决方案以恢复健康的本地生态系统。在1800年代介绍给北美,这一欧亚年度是由铁路,车辆和牲畜传播的,殖民地的土地被过度放牧和其他因素所困扰和退化。今天,数以百万计的英亩已转换为作弊的单一文化。数千万英亩的土地仍然处于入侵的高风险中。继续在西部广大地区进行扩张,这表明目前的牲畜放牧仍然负责备忘录的扩张和主导地位。作弊草是一位栖息地的通才,具有极高的生殖率,并且比本地草早发芽。它胜过本地植物的幼苗用于水和土壤养分,并改变土壤化学和植物植物的优势。牲畜践踏,放牧和表面障碍是通过消除天然的碎片草和生物土壤外壳来将健康的干旱生态系统转变为备用的草皮系统的关键生态转换,这些系统是对杂草的自然防御。现在,一个牲畜 - cheatgrass-fire循环在美国西部的许多公共土地上都占上风,使土地易受较大,更频繁的火灾。作弊草的入侵降解或消除了本地野生动植物的栖息地和牲畜范围。气候变化可能会改变作弊草的分布,并可能加剧入侵。恢复本地栖息地的解决方案仍然难以捉摸且昂贵。磁盘,有针对性的放牧,开处方的火灾,燃油破坏建筑风险恶化的作弊草侵害;非本地饲料物种的种植会产生自己的侵入性杂草侵袭;虽然除草剂,但天然寄生虫和本地植物的播种可能会在问题所需的区域尺度上失败。减少或消除牲畜放牧的结果足够大,但是完全恢复可能需要数十年。将本地牧场转换为作弊草显着降低了土壤碳,因此将作弊草侵染到本地植物组合中可能在缓解气候中起关键作用。我们建议从分配量表放牧的牲畜休息,直到本地物种取代作弊草。在有光侵扰的土地上,我们建议将放牧的牲畜放牧到促进本地物种繁荣和维持土壤生物的水平。简介
Trends and Patterns in Tea Yield Prediction using Machine Learning Algorithms – a Bibliometric Analysis Pallavi Nagpal 1, Deepika Chaudhary 2, Jaiteg Singh 3 1 Pallavi Nagpal, Research Scholar, CUIET, Chitkara University, Punjab, India 2 Deepika Chaudhary, Professor, CUIET, Chitkara University, Punjab, India 3 Jaiteg Singh,印度旁遮普邦Chitkara大学Cuiet教授a)pallavi1008cs.phd20@chitkara.edu.in b)deepika.chaudhary@chitkara.enchitkara.edu.inc)预测产量已成为研究的重点领域,因为它在应对诸如自然灾害,市场波动和有效的农业规划等挑战方面的重要作用。在各种农作物中,茶产量预测尤为重要,印度是世界上最大的茶水出口商之一[11,13]。这项研究进行了文献计量分析,以检查茶产率预测和ML技术的收敛性。它旨在提供详细的文献计量概述,并突出未来探索的研究差距。分析需要从Scopus,Web of Science,PubMed或Google Scholar等受信任来源收集书目数据,并根据[7]对其进行评估。数据跨越2015年至2024年。通过书目分析,该研究试图提供有价值的见解:1。通过机器学习(ML)的茶产量预测涉及使用先进的计算方法来估计可以从特定区域收获的茶的数量,考虑到各种影响因素,例如天气状况,土壤健康,灌溉实践,作物疾病和害虫侵扰。ml可以创建预测模型,这些模型比传统方法提供了更准确,可靠和及时的预测,从而改善了对茶养殖业务的管理。关键词:茶产量预测,农业中的机器学习,作物产量预测,茶的ML技术,环境因素,土壤气候,遥感等。简介:茶是全球消费量最广泛的饮料之一,其耕种在印度,中国和肯尼亚等国家的农业经济中起着至关重要的作用。准确的茶产预测对于有效的农作物管理,收获计划和促进可持续的农业实践至关重要。近年来,机器学习(ML)在农业研究中获得了重要的吸引力,因为它可以在农业数据中对复杂和非线性模式进行建模[14]。ML通过引入数据驱动的方法来改变农业,从而提高生产率,提高效率并促进可持续性[3,8]。通过处理大型数据集,ML算法实现精确的收益预测,优化资源使用情况,监控环境条件并检测植物疾病。特别是,茶产率预测已成为ML的关键应用,支持更好的
茶是印度最重要的饮料之一。它是第一大外汇收入来源。印度是世界上最大的茶叶生产国。印度的阿萨姆邦、梅加拉亚邦、特里普拉邦、北孟加拉邦(大吉岭)和锡金邦对该国的茶叶总产量贡献巨大。除此之外,印度南部的泰米尔纳德邦、卡纳塔克邦和喀拉拉邦也为茶叶生产做出了贡献。过去几年,人们发现茶产业正在失去立足之地。这主要是因为生产结构错误、由于生产成本高而无法与其他茶叶生产国竞争、小农户组织化、加工阶段的质量控制不佳以及更重要的害虫和疾病侵扰。遥感和 GIS 技术已被有效用于监测水稻、小麦等多种一年生作物。因此,开发一种使用遥感和 GIS 监测茶园的方法已成为迫切需要。之前缺乏使用遥感监测茶叶的研究,这为开发一种方法提供了想法,该方法可以帮助监测种植园的生长并在需要时采取有效措施。在本研究中,尝试使用遥感图像的纹理和色调变化来评估茶树的健康状况。应用灰度共生矩阵 (GLCM) 技术将茶斑分为健康、中度健康和患病茶。使用纹理和分类图像来描绘患病斑块。得出了健康、中度健康和患病茶的百分比。观察发现,2001 年 12 月的 LANDSAT 图像显示健康茶树的面积为 60.4%,中度感染茶树的面积为 23.6%,患病茶树的面积为 16.2%。对于 2004 年 2 月的 LISS III 图像,发现健康茶树的面积为 43.9%,中度感染茶树的面积为 36.8%,患病茶树的面积为 19.3%。同样,对于 2004 年 6 月的 ASTER 图像,发现健康茶树的面积为 24.9%,中度健康茶树的面积为 50.1%,患病茶树的面积为 25.1%。最后将结果与地面叶面积指数 (LAI) 和产量进行了比较。因此,这里尝试的纹理分析和色调变化可以在识别和检测茶园中的病斑方面发挥重要作用。这项研究表明,4 月、6 月和 8 月基于 MODIS 的 NDVI 与庄园层面的茶叶产量有显著相关性。为进一步检验 MODIS 得出的 NDVI 是否与 LAI 相关,建立了一个经验方程,结果表明茶叶的 LAI 与 NDVI 具有显著的线性关系 (R 2 =0.36)。然而,研究发现,仅凭不同时间段的 NDVI 观测结果无法解释茶叶产量的差异。这表明茶叶产量的统计模型似乎并不令人鼓舞。
在19日大流行之前,肯尼亚表现出相对稳定的生长。稳定的宏观经济环境,友好的商业环境,强大的基础设施支出和区域贸易帮助2019年推动了5.6%的增长,持续了十年的趋势。2019年总人口达到5140万,在过去30年中迅速增加。自2000年以来,人口增长平均每年2.7%,城市人口增长为4.4%,现在达到了总数的27%以上。数字经济正在帮助推动肯尼亚的经济增长。信息和通信技术(ICT)行业为经济发展做出了贡献,自2016年以来平均年增长近11%。肯尼亚人迅速接受了移动通信技术,并已成为通过数字支付的世界领导者。互联网使用正在上升,为电子商务和数字服务的吸收提供了动力。通过领导跨国科技公司的领导,使该国作为“硅萨凡纳人”的声誉赢得了富有创业精神和支持性的商业环境,催生了广泛的数字化初创公司和投资,并帮助燃料服务带来了增长。然而,Covid-19的持续传播及其遏制的措施将在各个部门和更广泛的经济体中权衡中期前景。贫困率一直在长期下降,尽管由于大流行期望有些逆转。除了19009年的冲击外,肯尼亚还面临着弹性的长期挑战。针对国际贫困线评估的极端贫困的发生率每天1.90美元从2006年的33%下降到2016年的估计24.4%。然而,持续的不平等存在,最低的40%仅占消费的13%,并且在农村和城市生活水平之间存在鲜明的鸿沟。肯尼亚在世界银行的人力资本指数上的排名略高,但是今天出生的孩子在成长时只会像他们经历完整的教育和充分健康的情况下成长时一样有效。该国高度暴露于自然危害,这些危害因气候变化而扩大,例如洪水,干旱,极端温度和蝗虫侵扰。依赖雨养农业或牲畜的农村人口,对食品价格上涨敏感的城市贫困人口,而在瘦长期间,资产有限的家庭受到这些冲击的影响最大。愿景2030旨在将肯尼亚转变为“新的工业化,中等收入国家,为2030年在清洁和安全的环境中为所有公民提供高质量的生活。” 2030年愿景计划的经济支柱旨在达到和维持平均每年10%的经济增长率,直到2030年。实现这一雄心勃勃的愿景并建立经济的韧性,企业和个人将不像往常一样。增加的数字技术的采用提供了一个机会,可以帮助缩小这些愿望与当前轨迹之间的差距。
简介:曲妥珠单抗emtansine(T-DM1)和曲妥珠单抗Deruxtecan(T-DXD,以前为DS-8201A),人表皮生长因子受体2(HER2)含量为抗体抗体抗体抗体 - 毒剂 - drog-drug congugate(ADC),通常用于转移性乳腺癌。但是,他们的实际安全性尚未得到充分比较。目标:我们旨在研究美国食品和药物管理局不利事件报告系统(FAERS)报告的T-DM1和T-DXD的不良事件(AE)。方法:从Faers数据(2004年1月至2023年6月)中,搜索了所有指示,作为主要可疑药物的T-DM1和T-DXD。通过报告比值比(ROR)和比例报告比率(PRR)进行了不成比例分析。通过单变量和多元后勤回归分析,在不同暴露因子下与T-DM1和T-DXD相关的致命AE的几率(OR)。结果:3723和2045 TM1和T-DXD的报告已提交给FAERS。最后,系统地分析了TM1和T-DXD的94和61个重要信号。T-DM1的频率最高和最强信号强度的有效AE分别降低(n = 108)和肝肺综合征(ROR = 680.42)。间质肺疾病(n = 262,ROR = 82.55)和肺炎(n = 89,ROR = 48.34)显示出T-DXD的高频和强信号强度。每个SOC系统中AE的比例都不同。t-dm1在神经系统,肌肉骨骼系统,肝胆系统,眼部系统,心脏系统和血液系统系统中具有更大比例的有效AE(P <0.05)。t-DXD在皮肤疾病,呼吸系统,侵扰,通用系统和胃肠道系统中具有更大比例的有效AE(P <0.05)。此外,与T-DM1相比,四个系统中致命AES的分析表明,T-DXD在血液学和呼吸系统中表现出明显更高的致命结局比例。相反,T-DM1在肝动物系统中的致命结果比例明显更高。T-DM1和T-DXD均未在心脏系统中表现出很高的死亡率。逻辑回归分析表明,TM1和T-DXD的高龄(≥65岁)和男性性别被确定为致命AES的独立风险因素。此外,发现药物联合疗法,特别是使用CYP3A4抑制剂,是与T-DXD特别相关的致命AES的危险因素。结论:T-DXD和T-DM1的肝毒性的血液学和呼吸毒性表现出很高的致命结局。至关重要的是鉴定高风险因素并增强临床应用过程中AE的监测。
4。van Oostrum N,De Sutter P,Meys J,Verstraelen H:与不育患者相关的与细菌性阴道病有关的风险:系统评价和荟萃分析。Hum Reprod 2013; 28:1809–15。5。Leitich H,KISS H:无症状细菌性阴道病和中间菌群作为不良怀孕结局的危险因素。 最佳实践临床诊所妇科2007年; 21:375–90。 6。 Brotman RM,Klebanoff MA,Nansel TR等。 :通过革兰氏染色评估的细菌性阴道病,并降低了对入射淋球菌,衣原体和三核生殖器生殖器感染的抗性性抗性。 J Infect Dis 2010; 202:1907–15。 7。 Lokken EM,Balkus JE,Kiarie J等。 :最近细菌性阴道病与采集支原体生殖器的关联。 Am J Epidemiol 2017; 186:194-201。 8。 Atashili J,Poole C,Ndumbe PM,Adimora AA,Smith JS:细菌性阴道病和HIV的获取:对已发表研究的荟萃分析。 AIDS 2008; 22:1493–501。 9。 Unemo M,Bradshaw CS,Hocking JS等。 :性传播感染:未来的挑战。 柳叶刀感染DIS 2017; 17:E235 – E279。 10。 Bilardi JE,Walker S,Temple-Smith M等。 :细菌性阴道病的负担:妇女对经常性细菌性阴道病的身体,情感,性和社会影响的经验。 PLOS ONE 2013; 8:E74378。 11。 Spiegel CA:细菌性阴道病。 Clin Microbiol Rev 1991; 4:485–502。 12。 FEMS Microbiol Rev 2020; 44:73–105。Leitich H,KISS H:无症状细菌性阴道病和中间菌群作为不良怀孕结局的危险因素。最佳实践临床诊所妇科2007年; 21:375–90。6。Brotman RM,Klebanoff MA,Nansel TR等。:通过革兰氏染色评估的细菌性阴道病,并降低了对入射淋球菌,衣原体和三核生殖器生殖器感染的抗性性抗性。J Infect Dis 2010; 202:1907–15。7。Lokken EM,Balkus JE,Kiarie J等。:最近细菌性阴道病与采集支原体生殖器的关联。Am J Epidemiol 2017; 186:194-201。8。Atashili J,Poole C,Ndumbe PM,Adimora AA,Smith JS:细菌性阴道病和HIV的获取:对已发表研究的荟萃分析。AIDS 2008; 22:1493–501。 9。 Unemo M,Bradshaw CS,Hocking JS等。 :性传播感染:未来的挑战。 柳叶刀感染DIS 2017; 17:E235 – E279。 10。 Bilardi JE,Walker S,Temple-Smith M等。 :细菌性阴道病的负担:妇女对经常性细菌性阴道病的身体,情感,性和社会影响的经验。 PLOS ONE 2013; 8:E74378。 11。 Spiegel CA:细菌性阴道病。 Clin Microbiol Rev 1991; 4:485–502。 12。 FEMS Microbiol Rev 2020; 44:73–105。AIDS 2008; 22:1493–501。9。Unemo M,Bradshaw CS,Hocking JS等。:性传播感染:未来的挑战。柳叶刀感染DIS 2017; 17:E235 – E279。10。Bilardi JE,Walker S,Temple-Smith M等。:细菌性阴道病的负担:妇女对经常性细菌性阴道病的身体,情感,性和社会影响的经验。PLOS ONE 2013; 8:E74378。 11。 Spiegel CA:细菌性阴道病。 Clin Microbiol Rev 1991; 4:485–502。 12。 FEMS Microbiol Rev 2020; 44:73–105。PLOS ONE 2013; 8:E74378。11。Spiegel CA:细菌性阴道病。Clin Microbiol Rev 1991; 4:485–502。12。FEMS Microbiol Rev 2020; 44:73–105。rosca AS,Castle J,LGV Sousa,Wind N:Gardenella and Vaginal Health:13。lamont RF,去Munckof EH,Luef BM,Vinter CA,JS:用于运输Eviosis Vagination的摇摆和滑动技术基础的财务。2020 FAC 2020; 9:21。 14。 Swidsinski A,Mendling W,Baucka V和Al。 :阴道细菌中的国外生物膜。 观察到Gynecol 2005; 106:1013–23。 15。 Vanechoutte M,Guschin A,Van Simaey L,歌曲Y,VanFreemeñF,Cools P: 11月,负载pioti sp。 nov。和Gardnere Swidssinskii sp。 加德纳。 Int J Syst Evol 2019; 69:679–87。 16。 Hill Je,Albert Ayk。 Infect 2019; 87:8:00532–19。 17。 Swidsinski A,Loing-Baucke V,Swidsinski S,Sobel JD,Dörffel和Guschin A:那些处于阴道电池不同形态的人。 微生物感染2022; 12:905739。 18。 渴望HL,Dukes CD:Vainatis Vagintice Aeemophilus:新定义的先前侵扰无特定于非特异性非特异性非特异性。 Am J观察者1955年; 69:962–76。 19。 Swidsinski A,Loenning-Baucke V,Mendling W和Al。2020 FAC 2020; 9:21。14。Swidsinski A,Mendling W,Baucka V和Al。:阴道细菌中的国外生物膜。观察到Gynecol 2005; 106:1013–23。15。Vanechoutte M,Guschin A,Van Simaey L,歌曲Y,VanFreemeñF,Cools P:11月,负载pioti sp。nov。和Gardnere Swidssinskii sp。加德纳。Int J Syst Evol 2019; 69:679–87。16。Hill Je,Albert Ayk。 Infect 2019; 87:8:00532–19。 17。 Swidsinski A,Loing-Baucke V,Swidsinski S,Sobel JD,Dörffel和Guschin A:那些处于阴道电池不同形态的人。 微生物感染2022; 12:905739。 18。 渴望HL,Dukes CD:Vainatis Vagintice Aeemophilus:新定义的先前侵扰无特定于非特异性非特异性非特异性。 Am J观察者1955年; 69:962–76。 19。 Swidsinski A,Loenning-Baucke V,Mendling W和Al。Hill Je,Albert Ayk。Infect 2019; 87:8:00532–19。17。Swidsinski A,Loing-Baucke V,Swidsinski S,Sobel JD,Dörffel和Guschin A:那些处于阴道电池不同形态的人。微生物感染2022; 12:905739。18。渴望HL,Dukes CD:Vainatis Vagintice Aeemophilus:新定义的先前侵扰无特定于非特异性非特异性非特异性。Am J观察者1955年; 69:962–76。19。Swidsinski A,Loenning-Baucke V,Mendling W和Al。:通过结构化多数型Gardnerella生物膜(STPM-GB)感染。Histol HistoPathol 2014; 29:567–87。20。Cerca N,Vaneechoutte M,Guschin A,Swidsinski A:女性健康Gahro专家小组会议报告中的多菌病感染和生物膜。res Microbiol 2017; 168:902–4。21。Swidsinski A,Verstraelen H,Loenning-Baucke V,Swidsinski S,Mendling W,Halwani Z:细菌性阴道病患者的多数子宫内膜生物膜存在。PLOS ONE 2013; 8:E53997。 22。 Swidsinski A,Mendling W,Loening-Baucke V等。 :口服甲硝唑标准治疗后,阴道上的粘附性gardnerella baginally生物膜持续存在。 Am J Obstet Gynecol 2008; 198:97。 23。 Swidsinski A,DörffelY,Loening-Baucke V,Schilling J,Mendling W:Gardnerella Vaginalis Biofilm对莫西法沙星治疗5天的反应。 FEMS免疫MED Microbiol 2011; 61:41–6。 24。 swidsinski A,Loing-Baucke V,Swidsinski S,Verstraelen H:多因素生物膜生物膜可抵抗细菌性阴道病女性的一部分静脉内抗菌治疗:一份初步报告。 Arch Gynecol Obstet 2015; 291:605–9。 25。 Muzny CA,JR Schwebke:生物膜:阴道感染中治疗衰竭和复发的机制不足。 Clin Infect Dis 2015; 61:601–6。PLOS ONE 2013; 8:E53997。22。Swidsinski A,Mendling W,Loening-Baucke V等。:口服甲硝唑标准治疗后,阴道上的粘附性gardnerella baginally生物膜持续存在。Am J Obstet Gynecol 2008; 198:97。23。Swidsinski A,DörffelY,Loening-Baucke V,Schilling J,Mendling W:Gardnerella Vaginalis Biofilm对莫西法沙星治疗5天的反应。FEMS免疫MED Microbiol 2011; 61:41–6。24。swidsinski A,Loing-Baucke V,Swidsinski S,Verstraelen H:多因素生物膜生物膜可抵抗细菌性阴道病女性的一部分静脉内抗菌治疗:一份初步报告。Arch Gynecol Obstet 2015; 291:605–9。25。Muzny CA,JR Schwebke:生物膜:阴道感染中治疗衰竭和复发的机制不足。Clin Infect Dis 2015; 61:601–6。
∂E(t)κe(t)d H 1表示E(t)曲率的平均值(t)。在物理文献中已经提出了这种类型的进化,作为使现象的模型[31,32]。像Mullins-sekerka流一样,集合E(t)的面积沿流量保存,周长不侵扰。曲率流的另一个重要特征是,它可以正式视为周长的L 2-级别流。通常,对(1.1)和(1.2)的平滑解决方案可能会在有限的时间内产生奇异性(例如,请参见[10,10,26,27])。利用所考虑的两个流的梯度流结构,可以通过最小化移动方案(在[3,25]中引入此设置),将弱解定义为(1.1)和(1.2)。此方案定义连续流的离散时间近似,通常称为离散流,具体取决于时间参数h。l 1-限速点为离散流的h→0称为平流,因此,在每次t∈[0,∞)时定义了集合e(t)的家族e(t)。在构建了这个全球范围的弱解决方案后,研究其渐近学是一个自然的问题。关于这些几何流量的解决方案的渐近行为有广泛的文献。一方面,在初始基准的各种几何假设下,一个人能够显示出(1.1)或(1.2)的平滑解决方案的全球及时存在,并表征其渐近行为。关于Mullins-Sekerka流,我们引用了[1,6,11,14],而某些对体积的平均曲率流量的参考为[4、5、5、12、9、34]。另外,人们可以直接研究离散的流量或流量,鉴于最近对所考虑的流量的弱唯一性的结果,这种观点已经获得了显着的兴趣。特别是,这些结果表明,只要存在(1.1)或(1.2)的经典解决方案,任何流动的流量就与之重合。在[13,16]中的(1.1)(在二维中)和[17]中的(1.2)中已证明这一点,在初始数据上的某些规律性假设下,另请参见[23],对于弱的唯一性,对于弱的唯一性结果,导致体积预状的弱弱概念的弱含量是平均平均曲率曲率。在平均曲率流(1.2)的欧几里得设置r 2和r 3中的情况已被很好地理解。第一个结果涉及融合向浮游向球的翻译的收敛,如[21]在n = 2,3。后来,由于具有尖锐指数的Alexandrov定理的新颖定量版本,在[29]中,作者证明了离散流向球,指数速率的收敛,没有其他翻译。随后,他们设法将这项研究扩展到[20,19]中更具挑战性的浮动案例。另请参见[22],有关平面各向异性情况的类似结果。在[20,19]中再次包含t 2中(1.1)的流量溶液的结果,假设初始基准e 0具有固定的阈值。在t 2中,这构成了初始基准e 0满意p(e 0)<2。这个问题至关重要。我们将重点放在平面,定期设置t 2上。在定期设置T N的确,由于流量不会增加周长,因此流量的唯一可能的限制点是球的工会,因此作者可以实质上应用它们在R 2中获得的稳定性结果而不会发生太大变化。
1。国家气候行动计划的基础是亚洲发展银行(ADB)对佐治亚州需求,优先级和承诺以及ADB的企业气候变化行动计划(2023-2030)以及ADB国家合作伙伴关系策略(CPS)的战略目标的支持,对佐治亚州的需求,优先事项和承诺以及对佐治亚州的需求,优先事项和承诺的适应性支持。气候行动是战略目标和CPS的横切优先级不可或缺的一部分。该计划概述了上游,中游和下游支持ADB计划,以提供增加融资,促进创新和提高气候行动能力的目标。它还旨在支持主要利益相关者之间的伙伴关系,政策对话和协调,以提高结果成就。ADB将作为其年度国家编程流程的一部分进行审查,其中包括在CPS实施的中点进行更深入的审查,并根据需要进行更新。A.操作气候行动需要2。气候变化对佐治亚州的财政和经济稳定构成了威胁,以及其人民的健康和福祉。该国极易受到气候变化影响和极端天气事件的影响,例如洪水,热浪,干旱,森林火灾和山体滑坡的频率和严重程度增加。1由于其地理位置和微气候和土地覆盖的多样性,佐治亚州面临多种气候影响。平均温度的升高将导致更频繁的热浪和干旱;冰川快速撤退,从而影响水力发电;以及更多挥发性的降水模式,导致更频繁的洪水。主要的包括:(i)由于海平面上升而导致的基础设施和住宅物业的沿海侵蚀和丧失; (ii)洪水,闪流,滑坡和泥泞的损害和生命损失; (iii)与干旱相关的农业产量损失和荒漠化; (iv)由于更频繁和密集的热浪而导致人类健康恶化; (v)增加森林火灾和害虫侵扰。国际货币基金组织(IMF)估计,在没有结构性改革的情况下,到2069年,气候变化引起的灾难可能会增加公共债务总债务(GDP)的15%,以适应气候风险为公共财务管理系统。2 3。气候适应至关重要。在过去的三十年中,佐治亚州的气候适应能力稳定地提高了其气候适应能力,与全球和地区同行相比,现在排名良好 - 在2021年圣母公司全球适应计划中,在182个国家中排名第42个国家。3但是,需要采取额外的投资和行动来遏制现有成本,并减轻未来的成本上升。这包括保存佐治亚州丰富的自然资本(即水资源,原始和生物多样性景观以及其他自然资源),这对于缓解气候变化和适应性至关重要,还提供经济前景,特别是对于旅游业和可再生能源(RE)生产。佐治亚州尚未制定任何定量适应目标,目前正在制定其国家适应计划。然而,佐治亚州国家气候变化战略(CCS)和缓解行动计划(CAP)的几个目标,与2021年通过,与适应有关。
生物学系,科学系,吉兰大学,南乔街,P.O.Box 1914,伊朗,伊朗,电话:0098-9113330017,传真:0098-131-3233647,电子邮件:umistbiology20@gmail.com; salehiz@guilan.ac.ir里海是世界上最大的陆上水域。它是地球上最大的封闭水体(Roshan等人。2012),占湖泊水域全球量的44%。与世界上其他半封闭和封闭的海洋相比,对里海的可变性知之甚少(Ibrayev等人。2010)。里海海洋受到环境威胁的巨大压力,例如海水水平的变化,捕捞过多,风险前锋海洋,侵扰工业和农业以及发展大多数中海国家的城市(Karrari等人)(Karrari等人2012; Jamalomidi 2013)。里海是一个封闭的水体,在中亚地区起着重要的地缘政治作用。在过去的几十年中,自然和人为因素的联合作用一直在加剧里海中的环境状态。不断增加的人类活动,例如石油和天然气行业,特别是在里海,渔业,农业和旅游业的北部,以及数十年的环境管理不善,导致了水质的严重退化(Fathabadi等人。2012; Fendereski 2014)。里海中最典型的有毒物质是石油烃,重金属,苯酚,表面活性剂和氯 - 有机农药(Aladin&Plotnikov 2004)。由于人为污染,它面临着重大的环境挑战。地理位置和碳氢化合物资源的存在(石油和天然气)使里海地区对沿海国家和主要世界大国的地球缘缘地区至关重要。里海地区的几个州包括里海的五个沿海国家:伊朗伊斯兰共和国,土库曼斯坦,哈萨克斯坦,俄罗斯联邦和阿塞拜疆共和国。里海环境面临的主要挑战包括水位上升,环境污染,外来物种进入里海海的入口,植物园的丧失和富营养化。分析性描述性研究试图回答这个基本问题:“里海沿岸国家对环境损害有什么责任?”可以说,里海的沿海国家单独或集体负责其自身的遗漏和行动,从而造成环境破坏。因为在里海及其沿海国家的各个方面的研究很重要,所以我们很高兴认识到为环境和农业研究做出贡献的研究人员的努力。本期特刊中的研究为生物,生态和农业研究提供了广泛的看法,该研究应为环境研究的未来研究提供信息和启发。Toshbekov等。(2024)在“北极狐狸的行为适应,vulpes lagopus响应气候变化”中促成了这一问题。Umirzokov等。(2024)在“里海沉积物的生化分析:对环境污染和生物修复的影响”中探讨了这个问题。他们的研究调查了北极狐狸,紫罗护拉戈普斯的行为适应,以应对气候变化,重点是阿拉斯加北部的三年(2021-2023)的狩猎模式的变化,DEN场地选择和社交互动的变化,并雇用了GPS追踪60 Foxes的GPS,100 Fox,100个远程相机陷阱和直接的现场观察。他们为里海沉积物的污染状况和微生物生态学提供了全面的见解,揭示了内在生物修复的巨大污染和显着的潜力。
2024年10月14日荣誉黛比·斯塔诺(Debbie Stabenow参议院农业委员会,美国众议院农业营养委员会和林业委员会1010 Longworth House Office大楼328-一家罗素参议院办公室大楼华盛顿特区20515华盛顿特区20510 DC 20510亲爱的主席Stabenow,董事长汤普森(Thompson)主席汤普森(Thompson)董事长汤普森(Thompson),在最近几周中,我们在卫生工具中排名大量的工具,曾经误以为是居住的工具。经理和其他人需要生产我们国家的食品,燃料和纤维用品;维持公共卫生计划;保护公共土地;并保留基础设施,以及其他用途。这些工具,包括农药和遗传创新,是安全,适当的监管,并且对于维持美国的竞争力和国家安全至关重要。我们强烈敦促国会和联邦监管机构拒绝为这些技术破坏现有风险和科学的监管框架的任何努力,这将使美国更依赖外国竞争对手对食品和农业产品。安全,负担得起且丰富的农产品供应对我国的福祉至关重要。数十年来,数百万的美国农民和牧场主已忠实地向美国消费者提供了这些商品。但是,如果不继续获得安全,适当监管的农业投入,则无法确保提供这些重要农业产品的能力。杂草,昆虫和真菌暴发会造成大量的作物产量损失。他们还可以侵扰放牧的土地,以至于它们无法使用牲畜并为野火燃料负荷做出贡献。如果不继续使用防止毁灭性害虫,美国农场和牧场业务所需的农药工具,将很快变得不可持续,这危害了我们为消费者提供负担得起的食品和其他农产品的能力。遗传改进技术对于持续的美国农业生产力,可持续性和竞争力至关重要。数十年来,这些工具已帮助美国农民提高了农作物的产量并预防害虫。这些工具的新颖应用可能有助于保护农作物免受干旱的影响,并提高其营养品质,以及其他改进。保留对这些技术的访问对于维持美国消费者的良好商品供应以及全球美国农业的竞争力至关重要。如上所述,不仅是我们国家的农业生产者受到对这些工具的潜在限制的影响。农药对于保护公共卫生和基础设施免受致命或破坏性的害虫(例如蚊子,白蚁,啮齿动物,臭虫等)至关重要。美国拥有基于风险和科学的法定当局,以支持这些重要工具的安全和正确使用。没有有意义的,继续使用这些工具,美国公众可能会因啮齿动物或昆虫传播疾病而受到数十亿美元的伤害,而公共和私人基础设施可能会因害虫损害而遭受巨大损失。例如,生物技术的产品受到USDA,FDA和EPA的彻底监管,以确保它们不会带来环境,食品或喂养安全风险。对于农药,EPA严格确保所有使用都不会对人类健康或环境构成不合理的风险。根据《食品质量保护法》(FQPA),国会为任何农药食品建立了默认的10倍安全系数