摘要目的:这项研究的目的是探索punicalagin的抗癌作用,Punicalagin是一种从Punica Granatum L.分离出的丰富的生物活性单宁化合物,在三种结肠癌细胞系上,即HCT 116,HT-29和LOVO。研究设计:在不同时期内用不同浓度的Punicalagin处理正常和结肠癌细胞。数据收集和分析:用CCK-8测定法测量细胞活力。使用膜联蛋白V和细胞死亡试剂盒和细胞入侵分析试剂盒分析了程序性细胞死亡和侵袭。通过蛋白质印迹测量了活性caspase-3,MMP-2,MMP-9,蜗牛和slug的表达。结果:细胞活力分析的结果表明,punicalagin对结肠癌细胞是细胞毒性的,但这不是以剂量和时间依赖性方式对正常细胞的细胞。此外,Punicalagin诱导结肠癌细胞的凋亡(如早期和晚期凋亡中结直肠癌细胞的累积百分比所示)。发现caspase-3治疗后caspase-3活性增加。Western印迹结果还表明,Punicalagin增加了激活的caspase-3的表现。相反,Punicalagin抑制了结肠癌细胞的侵袭。 此外,用Punicalagin治疗结肠癌细胞抑制了MMP-2,MMP-9,蜗牛和SLUG的表达。 结论:这些结果表明,caspase-3的激活以及MMP-2,MMP-9,Snail和Slug的抑制参与了Punicalagin对结肠癌细胞的影响。相反,Punicalagin抑制了结肠癌细胞的侵袭。此外,用Punicalagin治疗结肠癌细胞抑制了MMP-2,MMP-9,蜗牛和SLUG的表达。结论:这些结果表明,caspase-3的激活以及MMP-2,MMP-9,Snail和Slug的抑制参与了Punicalagin对结肠癌细胞的影响。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2023年12月5日发布。 https://doi.org/10.1101/2023.12.05.569925 doi:Biorxiv Preprint
健康、老年人和长期护理公共卫生 300 Carlton Street Winnipeg, Manitoba Canada R3B 3M9 2024 年 12 月 11 日 主题:儿童侵袭性脑膜炎球菌病 (IMD) 疫苗/补种计划指南更新 尊敬的医疗保健提供者, 马尼托巴省的侵袭性脑膜炎球菌病 (IMD) 发病率持续居高不下。截至 2024 年 12 月 6 日,自 2023 年 12 月 1 日以来,马尼托巴省共报告了 30 例确诊的 IMD 病例。通常每年报告约 6 例病例。几乎所有确诊病例均由 W 血清群(确诊 28 例)引起,主要影响 4 岁以下儿童和 30-55 岁的成人。自 2024 年 3 月 1 日起,曼尼托巴省将针对 12 个月大婴儿的推荐脑膜炎球菌疫苗从 Men-CC 疫苗更新为 Men-C-ACYW 疫苗,并针对 2020 年 1 月 1 日至 2023 年 2 月 28 日期间出生的儿童推出了补种计划。2024 年 6 月,向尚未接种 Men-C-ACYW 疫苗的人发送了一封提醒信。然而,一些目标人群的疫苗接种率仍然很低。我们强烈建议供应商优先考虑并推广此疫苗/补种计划。医疗保健提供者应根据省级公共资助疫苗资格标准(见下文)向所有符合条件的个人提供脑膜炎球菌结合四价疫苗 (Men-C-ACYW)。
农场和农业领导人敦促农民不要对在马尼托巴发现一种危险的新型油菜籽病害感到恐慌。但是,农民应该在冬季学习有关黄萎病的所有知识:如何发现它以及如何防止其蔓延。由于只有一个已知田地受到感染,因此仍有可能根除它。“我们已经对其进行了隔离,”马尼托巴省油菜种植者协会主席 Ed Rempel 说。加拿大油菜理事会主席 Patti Miller 表示根除是可能的。“如果这是一个完全孤立的事件,也许可以做些什么,”她说。“如果还有其他地点,您可以考虑其他风险缓解因素。”黄萎病是瑞典的头号油菜病。在收获季节,一块田地里发现了这种病害,大片的作物呈现出奇怪的枯萎模式。马尼托巴省农业部和加拿大食品检验局的官员视察了这块田地,采集了样本,组织了检疫措施,并追查了病原体的身份。
研究结果发表在《自然通讯》上,题为“NOS 抑制通过 c-JUN 抑制使化生性乳腺癌对 PI3K 抑制和紫杉烷疗法敏感”。这项研究的通讯作者是 Jenny Chang 博士,她是休斯顿卫理公会学术研究所的执行副总裁、总裁兼首席执行官兼首席学术官。她是该学术研究所的 Ernest Cockrell, Jr. 总裁杰出主席,曾任休斯顿玛丽和罗恩尼尔癌症中心主任
结果 在研究期间,我们对 31 岁生日之前的女孩和妇女进行了宫颈癌评估。接种过四价 HPV 疫苗的 19 名女性和未接种疫苗的 538 名女性被诊断出患有宫颈癌。接种过疫苗的女性中宫颈癌的累计发病率为每 100,000 人 47 例,未接种疫苗的女性中宫颈癌的累计发病率为每 100,000 人 94 例。在调整随访年龄后,接种疫苗人群与未接种疫苗人群的发病率比为 0.51(95% 置信区间 [CI],0.32 至 0.82)。在额外调整其他协变量后,发病率比为 0.37(95% CI,0.21 至 0.57)。调整所有协变量后,17 岁前接种过疫苗的女性的发病率比为 0.12(95% CI,0.00 至 0.34),17 至 30 岁期间接种过疫苗的女性的发病率比为 0.47(95% CI,0.27 至 0.75)。
宫颈癌是妇科最常见的恶性肿瘤,转移是患者死亡的重要原因。miRNA(microRNA)已被发现在宫颈癌转移中起关键作用,但miR-362-3p在CC中的作用尚不明确。本研究旨在探讨miR-362-3p在宫颈癌迁移和侵袭中的作用。我们比较了宫颈癌组织和癌旁正常宫颈组织中miR-362-3p的表达水平。在CC组织中,miR-362-3p表达显著下调,这与癌症分期和患者生存有关。miR-362-3p能有效抑制宫颈癌细胞的迁移和侵袭。双荧光素酶报告基因检测结果显示,BCAP31(B细胞受体相关蛋白31)是miR-362-3p的直接靶蛋白。临床组织样本免疫组化检测结果显示,BCAP31在宫颈癌中异常高表达,且与临床分期呈正相关。敲减BCAP31的作用与miR-362-3p过表达类似。进一步的GSEA分析显示,BCAP31可能参与多种生物学过程,如蛋白质转运、代谢、细胞器组织等。本研究结果提示,miR-362-3p通过直接靶向BCAP31抑制宫颈癌的迁移和侵袭,恢复miR-362-3p水平可能成为未来宫颈癌的一种新治疗策略。
摘要背景:转移性高级别骨肉瘤 (HGOS) 的低存活率在过去 30 年里一直停滞不前。本研究旨在探讨氨基肽酶 N (ANPEP) 在 HGOS 进展中的作用,以及一种新型亲脂性肽酶增强细胞毒化合物美法仑氟苯胺 (melflufen) 在 HGOS 中的靶向作用。方法:对公开的基因表达数据集进行荟萃分析,以确定 ANPEP 基因表达对 HGOS 患者无转移存活率的影响。在患者来源的 HGOS 离体模型和细胞系中研究了标准抗肿瘤药物和亲脂性肽酶增强细胞毒结合物美法仑的疗效。比较了美法仑和阿霉素诱导的细胞凋亡和坏死动力学。在体内研究了美法仑的抗肿瘤作用。结果:发现 HGOS 患者诊断活检中 ANPEP 表达升高会显著降低无转移生存率。在药物敏感性试验中,美氟芬在 HGOS 离体样本和细胞系中表现出抗增殖作用,包括对甲氨蝶呤、依托泊苷、阿霉素和 PARP 抑制剂有耐药性的细胞系。此外,用美氟芬处理的 HGOS 细胞显示出快速诱导凋亡,这种敏感性与 ANPEP 的高表达相关。在联合治疗中,美氟芬与阿霉素在杀死 HGOS 细胞方面表现出协同作用。最后,美氟芬在体内表现出抗肿瘤生长和抗转移作用。结论:本研究可能为使用美氟芬作为阿霉素的佐剂来提高转移性 HGOS 的治疗效果铺平道路。
摘要 美国疾病控制与预防中心 (CDC) 发布此健康警报网络 (HAN) 健康咨询,以提醒医疗保健提供者注意侵袭性脑膜炎球菌病的增加,主要归因于脑膜炎奈瑟菌血清群 Y(图)。 2023 年,美国报告了 422 例病例,这是自 2014 年以来报告的年度病例数最高的一年。截至 2024 年 3 月 25 日,本日历年已向 CDC 报告了 143 例病例,比 2023 年截至该日期报告的 81 例增加了 62 例。2023 年,美国报告的大多数(148 例中的 101 例,68%)具有可用序列类型数据的 Y 血清群病例是由一种特定的脑膜炎球菌菌株(序列类型 (ST) 1466)引起的。由这种菌株引起的病例主要发生在 30-60 岁人群(65%)、黑人或非裔美国人(63%)和 HIV 感染者(15%)中。此外,2023 年 ST-1466 引起的侵袭性脑膜炎球菌病的大多数病例都有脑膜炎以外的临床表现:64% 表现为菌血症,至少 4% 表现为化脓性关节炎。在 94 名已知结果的患者中,有 17 人 (18%) 死亡;这一病死率高于 2017-2021 年报告的 Y 血清群病例的历史病死率 11%。医疗保健提供者应 1) 高度怀疑脑膜炎球菌病,特别是在受当前增长影响较大的人群中,2) 意识到患者可能没有脑膜炎的典型症状,3) 确保所有建议接种脑膜炎球菌疫苗的人,包括 HIV 感染者,都及时接种了脑膜炎球菌疫苗。
水平基因转移是细菌进化的关键驱动力,但它也通过引入侵入性的移动遗传元素给细菌带来了严重的风险。为了应对这些威胁,细菌开发了各种防御系统,包括原核生物Argonautes(Pago)和DNA防御模块DDMDE系统。通过生化分析,结构测定和体内质粒清除分析,我们阐明了DDMDE的组装和激活机制,从而消除了小型多拷贝质粒。我们证明了一种类似pago的蛋白DDME充当催化性,DNA引导,靶向DNA靶向防御模块。在存在引导DNA的情况下,DDME靶向质粒并募集二聚体DDMD,其中包含核酸酶和解旋酶结构域。与DNA底物结合后,DDMD从自身抑制的二聚体转变为活性单体,然后沿着并裂解质粒。一起,我们的发现揭示了DDMDE介导的质粒清除的复杂机制,从而为针对质粒入侵的细菌防御系统提供了基本见解。