早期检测对于控制阿尔茨海默病 (AD) 进展和延缓认知衰退至关重要。磁共振成像等传统医疗程序成本高昂,需要长时间等待,并且需要复杂的分析。或者,在过去几年中,研究人员已经成功评估了基于机器学习和脑电图 (EEG) 的 AD 检测方法。尽管如此,这些方法通常依赖于手动处理或涉及非便携式 EEG 硬件。这些方面对于自动诊断而言并不理想,因为它们需要额外的人员并妨碍便携性。在这项工作中,我们报告了基于使用 16 个通道的商业 EEG 采集系统的自驱动 AD 多类判别方法的初步评估。为此,我们记录了三组参与者的 EEG:轻度 AD、轻度认知障碍 (MCI) 非 AD 和对照组,并实施了自驱动分析流程来区分这三组。首先,我们将自动伪影剔除算法应用于 EEG 记录。然后,我们从预处理的时期中提取了功率、熵和复杂性特征。最后,我们通过留一交叉验证使用多层感知器评估了多类分类问题。我们获得的初步结果与文献中的最佳结果(0.88 F1 分数)相当,这表明可以通过基于商业 EEG 和机器学习的自驱动方法检测 AD。我们相信这项工作和进一步的研究可能有助于在一次咨询会话中检测 AD,从而降低与 AD 筛查相关的成本并可能推进医疗治疗。© 2022 作者。由 Elsevier BV 出版这是一篇根据 CC BY-NC-ND 许可的开放获取文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)
脑机接口 (BCI) 分析个体与设备或外部环境直接交互的意图 (Wolpaw 等,2000)。个体的意图可以通过脑电图 (EEG) 来解码,脑电图由于其高时间分辨率、可靠性、可负担性和便携性而成为一种成熟的非侵入式技术。目前,由于机器学习和深度学习方法的发展,BCI 已经在辅助和临床领域得到应用。快速串行视觉呈现 (RSVP) 是在同一空间位置以每秒多张图像的高呈现速率顺序显示图像的过程。基于 RSVP 的脑机接口 (BCI) 是一种特殊类型的 BCI 系统 (Marathe 等,2016;Wu 等,2018)。它被证明是一种增强人机共生和人类潜能的可实现方法 (Manor 等,2016)。基于RSVP的BCI是基于人类视觉进行目标检测最常用的技术,其中使用的事件相关电位(ERP)是P300和N200(Wei等,2022)。人类视觉系统是一种非常复杂的信息处理机器。人类具有很强的学习、认知能力和敏感性,可以一眼就识别物体(Sajda等,2010)。因此,基于RSVP的BCI可以利用人类视觉的灵活性获得对环境的快速感知。当前的研究主要集中在提出适用于基于RSVP的BCI的更可靠、更有效的特征提取算法。由于其非平稳性和低信噪比(SNR),在RSVP任务中很难区分目标和非目标刺激。Sajda等人。 (2010 年)开发了一种分层判别成分分析(HDCA)算法,该算法采用 Fisher 线性判别(FLD)来计算空间域中的权重
本研究主题重点关注功能性近红外光谱 (fNIRS) 方法和应用的最新发展。它由 150 多位作者撰写的 28 篇关于各个方面的文章组成。它包括原创研究文章 (24)、临床试验 (1)、假设和理论 (1) 和评论 (2)。近红外光谱已用于研究大脑功能三十多年。近年来,由于该技术具有非侵入性、成本效益和便携性等竞争优势,其方法和应用取得了重大进展。在本研究课题中,我们看到了大量新颖的 fNIRS 应用,其中包括幻想的神经机制(Li 等人)、太极拳(Yang 等人)、触觉辅助调解(Zheng 等人)、感觉冲突(Nguyen 等人)、心理旋转(Mutlu 等人)、疲劳握力(Urquhart 等人)和哑铃锻炼(Wang 等人)。例如,Yang 等人报告称,8 周的太极拳干预可以提高老年人的抑制控制能力,这与前额叶激活增加有关。研究结果表明,太极拳锻炼可能是一种有效、合适的干预措施,可用于改善老年人的执行功能。Zheng 等人报告称,经过 5 天的练习,触觉辅助调解可以减少走神并提高注意力。此外,这种改善与右前额叶激活活动的增强以及与注意力网络相关的大脑区域之间的功能连接的显著变化有关。Urquhart 等人的研究调查了运动任务疲劳对不同频带(内皮、神经源性和肌源性)脑血流动力学的影响。这项研究的一个优势是将四种不同类型的功能连接指标应用于 fNIRS 信号。他们的方法是可行的,
当定制至关重要时,光学参考腔 (ORC) 系列就是我们的解决方案。您可以从出色的适配、辅助仪器和服务组合中进行选择,并从我们设计多代超稳定激光系统的经验中获益。ORC 系列是法布里-珀罗型腔,其谐振腔垫片由超低膨胀玻璃 (ULE) 制成。腔体安装在密封真空外壳中,具有出色的温度稳定性,可实现低频率漂移。紧凑的设计确保最小的空间需求。ORC-Cubic 可作为 6U、19 英寸机架模块使用。它基于国家物理实验室授权的刚性安装的立方体垫片。ORC-Cylindric 使用由德国联邦物理技术研究院设计的圆柱形垫片,水平安装在四个支撑点上。在这里,机械锁定机制确保了便携性。有各种附加组件和选项可供定制:镜面基底有 ULE 或熔融石英 (FS) 两种,镜面涂层可以是离子束溅射 (IBS) 或晶体 (XTAL),当低热噪声至关重要时,需要后者。高反射涂层适用于很宽的波长范围,也可作为双重或三重高反射镜。输入耦合、PDH 锁定和输出监控模块可以牢固地安装到腔体上,从而省去了运输后的繁琐重新调整。每个系统都在组装过程中经过烘烤。内置的 NTC 和 Peltier 元件可通过真空馈通装置接触,从而允许在热膨胀系数 (CTE) 的零交叉处工作。可根据要求提供 CTE 特性。两种腔体也可不带外壳。
移动大脑和身体成像 (MoBI;Gramann 等人,2011) 研究方法的出现提供了前所未有的机会,可以脱离人工实验室环境,直接在现实环境中研究认知过程 (De Vos、Gandras 和 Debener,2014;Gramann、Jung、Ferris、Lin 和 Makeig,2014;Makeig、Gramann、Jung、Sejnowski 和 Poizner,2009)。在过去十年中,传感器微型化技术取得了进展,提高了研究级身体和神经成像硬件的便携性 (Mcdowell 等人,2013),从而允许在实验室外长时间记录大脑数据 (Hölle、Meekes 和 Bleichner,2021)。更确切地说,移动 EEG 和移动眼动追踪 (ET) 开辟了新的研究途径,可以更好地了解人们在现实世界中的思维和行为方式。利用此类移动研究方法所带来的激动人心的前景激发了人们对开发新型信号处理方法的兴趣(Reis、Hebenstreit、Gabsteiger、von Tscharner 和 Lochmann,2014 年)。总之,这些发展使得人们能够直接在自然环境中研究人类认知(Ladouce、Donaldson、Dudchenko 和 Ietswaart,2017 年),以解决广泛研究领域的基础和应用问题,例如体育科学(Park、Fairweather 和 Donaldson,2015 年)、建筑(Djebbara、Fich 和 Gramann,2019 年)和城市规划(Birenboim、Helbich 和 Kwan,2021 年)、神经人体工程学(Gramann 等人,2021 年;Dehais、Karwowski,
全球能源需求的不断增长以及化石燃料消耗引起的气候变化要求实施可再生能源技术。然而,风能和太阳能发电的间歇性要求可靠的能量储存。虽然二次电池由于其模块化和便携性而成为颇具吸引力的储能设备,但目前的电池技术,如锂离子电池 (LIB),尚未达到广泛采用所需的能量密度和低成本。在迄今为止研究的各种电池化学中,锂硫 (Li-S) 电池作为 LIB 的有前途的替代品脱颖而出。锂硫电池可以实现 2,572 Wh kg -1 的高理论重量能量密度,几乎比目前的 LIB 高一个数量级。硫的储量丰富且成本低廉也使 Li-S 电池比现有的钴基 LIB 更实惠、更环保。然而,由于一种众所周知的“穿梭效应”现象,Li-S 电池的循环性较差。 1–4 在放电过程中,正极经历多电子转化过程,其中元素硫被还原为可溶性 Li 2 S x (x = 4-8),然后终止于不溶性 Li 2 S。生成的可溶性多硫化物 (PS) 可以从正极浸出到电解质中,导致活性材料损失和电极表面钝化。这种穿梭效应导致容量衰减迅速、自放电率高和电池阻抗高。缓解多硫化物浸出的一种解决方案是在正极采用硫宿主材料。为了实现最佳的活性材料利用率和循环性能,应考虑硫宿主的极性、孔隙率和电导率,因为这些特性与其能力密切相关
自 20 世纪初以来,脑电图 (EEG) 已被广泛应用于医疗和各种大脑过程的研究。随着技术的快速发展,越来越多精确和先进的研究工具应运而生。然而,这些设备的主要限制因素往往是价格高,有些设备便携性差,设置时间长。尽管如此,市场上还是出现了各种各样的无线 EEG 设备,它们没有这些限制,但信号质量较低。同时对多名参与者进行 EEG 记录的技术以及新的技术解决方案为了解群体的大脑情绪动态提供了更多可能性。大量研究对许多移动设备进行了比较和测试,但结果却相互矛盾。因此,在开展大规模研究之前,测试特定无线设备在特定研究环境中的可靠性非常重要。本研究的目的是评估两种无线设备(g.tech Nautilus SAHARA 电极和 Emotiv™ Epoc +)用于检测音乐情绪的可靠性,并与金标准 EEG 设备进行对比。16 名参与者报告说,在听他们最喜欢的令人毛骨悚然的音乐片段时,他们感到情绪愉悦(从低度愉悦到音乐般的寒意)。在情绪检测方面,我们的结果显示,在 alpha 频段的左前额叶和左颞叶区域,Epoc + 与金标准设备之间存在统计学上的显著一致性。我们验证了 Emotiv™ Epoc + 在音乐情绪研究中的用途。我们没有发现 g.tech 和黄金标准之间存在任何显著的一致性。这表明 Emotiv Epoc 更适合在自然环境中调查音乐情绪。
自 20 世纪初以来,脑电图 (EEG) 已被广泛应用于医疗和各种大脑过程的研究。随着技术的快速发展,越来越多精确和先进的研究工具应运而生。然而,这些设备的主要限制因素往往是价格高,有些设备便携性差,设置时间长。尽管如此,市场上还是出现了各种各样的无线 EEG 设备,它们没有这些限制,但信号质量较低。同时对多名参与者进行 EEG 记录的技术以及新的技术解决方案为了解群体的大脑情绪动态提供了更多可能性。大量研究对许多移动设备进行了比较和测试,但结果却相互矛盾。因此,在开展大规模研究之前,测试特定无线设备在特定研究环境中的可靠性非常重要。本研究的目的是评估两种无线设备(g.tech Nautilus SAHARA 电极和 Emotiv™ Epoc +)用于检测音乐情绪的可靠性,并与金标准 EEG 设备进行对比。16 名参与者报告说,在听他们最喜欢的令人毛骨悚然的音乐片段时,他们感到情绪愉悦(从低度愉悦到音乐般的寒意)。在情绪检测方面,我们的结果显示,在 alpha 频段的左前额叶和左颞叶区域,Epoc + 与金标准设备之间存在统计学上的显著一致性。我们验证了 Emotiv™ Epoc + 在音乐情绪研究中的用途。我们没有发现 g.tech 和黄金标准之间存在任何显著的一致性。这表明 Emotiv Epoc 更适合在自然环境中调查音乐情绪。
使用Arduino和Matlab 1 JVD Rama Charan,2 B. Venkatesh,3 D. Bhavani Goud,4 D. P. Satish Kumar 123名学生,4 HOD电子和传播工程系Ace工程学院,Medchal-501301抽象心脏病已成为一个重要的问题,在过去的几十年中,许多人因它们而死亡。统计数据证明,心血管疾病是导致人类死亡的最大疾病之一。由于多种冠状动脉疾病,风湿性,脑血管心脏病等几种冠状动脉疾病,每年大约有1790万人死亡。证明,上述死亡人数的三分之一主要是由于心肌梗死的70岁以下。对心脏异常的检测是医疗保健中的关键任务,可以早期诊断和及时干预。此摘要提出了一种利用Arduino和Matlab检测心脏异常的新方法。提出的系统将低成本和多功能的Arduino平台与MATLAB的强大数据处理能力相结合,为医疗保健从业者提供有效且可访问的解决方案。该系统涉及使用基于Arduino的传感器获得心电图(ECG)信号。这些传感器捕获了心脏产生的电信号,并将其转换为数字数据进行分析。然后使用信号处理技术在MATLAB中处理并在MATLAB中进行分析。在MATLAB中,预处理ECG信号以消除噪声和伪影,从而提高了数据质量。拟议的Arduino和基于MATLAB的系统提供了几个优点,包括成本效益,便携性和易用性。它可以实时监测和早期发现心脏异常,从而赋予医疗保健提供者有价值的诊断信息。未来的工作可以专注于扩展系统的功能,提高准确性,并结合其他生理参数,以增强整体诊断性能。
在医疗中,在疾病早期阶段的病原体检测是建立适当诊断的关键步骤。为了实现这一目标,已经详细阐述了几种技术,以进行诊断点诊断。最先进的方法之一是生物传感器设备的应用。通过其相对敏感性,速度和便携性,可确保从流体样本中适当地检测病原体,从而提供适当的病原体,从而为传统诊断技术提供可行且负担得起的替代方案。本研究的目的是通过廉价的电光生物传感器来满足这些需求,以在临床诊断中进行快速测试。因此,创建了由介电网状表面电极,肋波导和微流体通道组成的集成微型系统,用于从流体样品中对细菌进行无标记的光学检测。为了建模传感器的效率,我们通过观察到波导附近的活的大肠杆菌细胞散布的光,进行了定量测量。即使使用中等放大倍率的目标(x10,x4.7),也观察到散射光模式的明显变化,这意味着也可以通过低成本摄像机来实现这种类型的细胞感应。还建立了在介电性细胞收集过程中使用的最佳频率。使用这个新型系统,检测极限为ca。10 2 CFU×ML - 1,这与体液中的特征性病原体浓度有关,例如尿液。我们的进一步计划是在其他高度敏感的集成光传感器构建体中利用这种细胞收集方法。该介电原则的工作原理可以从其悬浮液中增强对大肠杆菌细胞的检测,这使我们有一个低成本和快速感应的改变本地人,但可以经常使用,但时间和货币耗尽的其他方法。因此,我们希望它很容易适用于护理点诊断,作为快速测试的基础,以鉴定各种体液中的一般病原体。