NASA正在努力通过Artemis计划重返月球,并最终通过Artemis计划,利用创新技术来建立与美国商业和国际合作伙伴合作的可持续探索架构[1]。未来的NASA体系结构具有基本的低温推进系统,以支持月球任务和最终对火星的未来任务。NASA一直投资于过去十年中的CFM活动和被动存储,转移和测量技术,以及主要集中于地面发育,并进行了一些小规模的微重力液实验。最近,NASA创建了一个低温流体管理(CFM)技术图表,以确定需要进一步开发才能达到技术准备水平(TRL)6的关键差距,然后再注入飞行应用程序。以解决技术差距,从战略上计划通过地面和飞行演示,与国际合作伙伴合作,并利用公共私人合作伙伴关系(PPPS)通过协作机会(ACO)申请通过临界点(ACO)求职点来投资于多元化的CFM投资组合方法。一旦证明了这些系统功能,这些系统功能将使Artemis计划及其他地区所需的高性能推进剂系统。
b' 对锂离子电池的技术需求快速增长,促使人们开发具有高能量密度、低成本和更高安全性的新型正极材料。高压尖晶石 LiNi 0.5 Mn 1.5 O 4 (LNMO) 是尚未商业化的最有前途的候选材料之一。这种材料的两个主要障碍是由于高工作电压导致的较差的电子电导率和全电池容量衰减快。通过系统地解决这些限制,我们成功开发出一种厚 LNMO 电极,面积容量负载高达 3 mAh \xe2\x8b\x85 cm 2 。优化的厚电极与纽扣电池和袋式电池级别的商用石墨阳极配对,在 300 次循环后,全电池容量保持率分别高达 72% 和 78%。我们将这种出色的循环稳定性归功于对电池组件和测试条件的精心优化,特别注重提高电子电导率和高压兼容性。这些结果表明,精确控制材料质量、电极结构和电解质优化很快就能支持基于厚 LNMO 阴极(> 4 mAh \xe2\x8b\x85 cm 2)的无钴电池系统的开发,这最终将满足下一代锂离子电池的需求,降低成本,提高安全性,并确保可持续性。'
科技精英中,在家抛弃数码设备已成为一种流行趋势。两年前,“比尔·盖茨和史蒂夫·乔布斯让他们的孩子远离科技”成为热门新闻标题。科技行业父母的孩子入读非传统低科技学校(如旧金山的 Brightworks 和全国许多华德福学校)就是明证。这些学校以强调创造性游戏和战略性地不使用科技而闻名,因为它们相信孩子们通过好玩的、以学习者为主导的方式可以学得最好。有趣的是,这些以学习者为主导的好玩的方式塑造了创客空间运动所诞生的同一种理念。然而,创客空间 [1] 的一个核心要素是能够获得数字制造和开放电子资源。那么,为什么硅谷的父母要为他们的孩子寻找创客空间呢?
