b'由于 TGF- 信号在免疫稳态中的作用,其紊乱是炎症性疾病的根本原因。许多慢性炎症性疾病都以纤维化为特征,纤维化与细胞外基质的过度沉积同时发生,导致受影响器官的正常功能丧失。TGF- 家族还通过激活成纤维细胞向肌成纤维细胞表型转变,在纤维化的启动和进展中发挥着重要作用。在肿瘤发生的早期阶段,TGF- 可能通过诱导肿瘤前细胞的细胞停滞和凋亡而充当肿瘤抑制因子。然而,在后期,当癌细胞获得致癌突变,从而脱离 TGF- 肿瘤抑制因子功能时,它会通过刺激肿瘤细胞进行上皮\xe2\x80\x93间质转化 (EMT) 而成为肿瘤促进剂,从而增加迁移和侵袭。 TGF- 在肿瘤微环境内的免疫抑制中也发挥着核心作用,最近的研究揭示了它在肿瘤免疫逃避和癌症免疫治疗反应不佳中的作用。'
在牲畜中广泛使用抗菌生长启动子(AGP),由于致病微生物中抗菌素耐药性(AMR)的增加而引起了全球关注。本综述将益生菌视为AGP的可持续替代品,为促进动物生长和健康的一种更安全的方法。益生菌通过产生抗菌化合物并与病原体竞争营养物质来提高动物生产力和免疫力。此外,益生菌增强了肠道屏障并调节肠道微生物组,从而促进了有益的细菌生长,同时抑制了致病物种。研究表明,在抑制病原体(例如灌注梭状芽胞杆菌和牲畜沙门氏菌)中,乳杆菌属和双杆菌的益生菌菌株的效率。这种全面的评估强调了益生菌的潜力,可以推动可持续的牲畜做法,减少对抗生素的依赖并减轻AMR风险,强调需要进一步研究和监管性考虑因素在动物饲养中的使用。
此处提供的信息是在接收者在使用前自行确定其用途适用性的条件下提供的。在任何情况下,Interface Polymers Limited 对于因使用或依赖此处信息或该信息所指产 品而导致的任何性质的损害不承担责任。此处所包含的内容不应被解释为建议使用任何与专利冲突的产品、工艺、设备或配方,且 Interface Polymers Limited 不对使用 这些内容是否侵犯任何专利作出任何明示或暗示的声明或保证
此处提供的信息是在接收者在使用前自行确定其用途适用性的条件下提供的。在任何情况下,Interface Polymers Limited 对于因使用或依赖此处信息或该信息所指产 品而导致的任何性质的损害不承担责任。此处所包含的内容不应被解释为建议使用任何与专利冲突的产品、工艺、设备或配方,且 Interface Polymers Limited 不对使用 这些内容是否侵犯任何专利作出任何明示或暗示的声明或保证
摘要:神经胶质瘤的侵袭性和对治疗的抵抗性使其成为肿瘤学的一个主要问题。尽管医学科学取得了重大进步,但神经胶质瘤的预后仍然不容乐观,手术、放疗 (RT) 和化疗 (CT) 等传统治疗方法经常被证明无效。在发现神经胶质瘤干细胞 (GSC) 后,将神经胶质瘤视为均质肿块的传统观点发生了变化。GSC 对肿瘤生长、治疗抵抗和复发至关重要。这些细胞独特的分化和自我更新能力正在改变我们对神经胶质瘤生物学的认识。本系统文献综述旨在揭示与 GSC 相关的神经胶质瘤进展的分子驱动机制。系统综述遵循 PRISMA 指南,在 PubMed、Ovid MED-LINE 和 Ovid EMBASE 上进行了彻底的文献检索。第一次文献检索于 2024 年 3 月 1 日进行,搜索更新于 2024 年 5 月 15 日。搜索使用 MeSH 术语和布尔运算符,重点关注与 GCS 介导的胶质瘤进展相关的分子机制。纳入标准包括英文研究、临床前研究和临床试验。最初确定了 957 篇论文,其中 65 篇从 2005 年到 2024 年的研究最终被纳入审查。主要 GSC 模型分布按频率降序排列:U87:20 项研究(32.0%);U251:13 项研究(20.0%);A172:4 项研究(6.2%);和 T98G:2 项研究(3.17%)。从最频繁到最不频繁,主要 GSC 通路的分布如下:Notch:8 项研究(12.3%);STAT3:6 项研究(9.2%); Wnt/β-catenin:6 项研究(9.2%);HIF:5 项研究(7.7%);PI3K/AKT:4 项研究(6.2%)。分子效应的分布(从最常见到最不常见)如下:抑制分化:22 项研究(33.8%);增加增殖:18 项研究(27.7%);增强侵袭能力:15 项研究(23.1%);增加自我更新:5 项研究(7.7%);抑制细胞凋亡:3 项研究(4.6%)。这项研究突出了 GSC 异质性和胶质母细胞瘤微环境中的动态相互作用,强调需要采取量身定制的方法。影响 GSC 行为的一些关键通路是 JAK/STAT3、PI3K/AKT、Wnt/β-catenin 和 Notch。治疗可以针对这些通路。这项研究敦促进行更多研究以填补 GSC 生物学方面的知识空白,并将研究结果转化为有用的治疗方法,以改善 GBM 患者的治疗结果。
肿瘤诱导的免疫细胞募集是对早期疾病的早期反应,通过启动致癌炎症,导致免疫介导促进肿瘤细胞增殖、存活和血管生成 (5)。如果早期流入的免疫细胞成功检测到异常并发起免疫反应,恶性细胞将被直接消灭。但是,如果信号或反应不足导致免疫逃避,肿瘤就会发展并开始局部生长,最终扩散到远处。肿瘤的发展伴随着一系列可溶性因子,这些因子促进非恶性细胞、血管和基质的流入,共同形成肿瘤微环境 (TME) (6)。随着肿瘤的进展,TME 逐渐发生变化,可能变得非常复杂。因此,对 TME 本质的研究有望带来改善治疗反应的新干预措施。
联合抗逆转录病毒疗法 (cART) 可减少 HIV-1 的复制,但 HIV-1 原病毒仍在潜伏病毒库中存活 [1]。潜伏病毒库是一群免疫细胞,其中含有整合的 HIV-1 原病毒,该原病毒不进行病毒复制,因此可以躲避免疫系统的侦测。然而,潜伏病毒库仍具有复制能力,因此中断治疗会导致病毒反弹,从而必须终生坚持 cART 治疗。药物疲劳、副作用、高昂的治疗费用、耐药菌株的出现和耻辱感仍然与 HIV-1 感染有关 [2]。此外,艾滋病毒感染者 (PLWH) 会因慢性炎症而早衰 [3]。这强调了继续努力治愈 HIV-1 感染的重要性。要治愈 HIV-1 感染,需要根除或永久抑制潜伏病毒库。目前,有多种策略正在研究,以消除潜伏病毒库,例如嵌合抗原受体 T 细胞 (CAR-T) 疗法 [4] 和基因编辑策略 [5–8]。然而,休克和杀伤策略可能是研究最多的
摘要:简介:Docosahexaenoic Acid(DHA)是n -3长链多不饱和脂肪酸,对于胎儿发育至关重要,胎盘通过胎盘从母亲传输到胎儿。含有2A(MFSD2A)的主要促进剂超级家族型溶血磷脂酰胆碱(LPC)转运蛋白位于人胎盘的合成型胞植物细胞的基础质膜中,人胎盘的胎盘膜细胞和MFSD2A表达与人类表达的人类表达与昏迷的corn lumbilical Corncly lppc-lpc-lpc-dha相关。我们假设孕妇小鼠中MFSD2A的胎盘特异性敲低会减少胎儿脑中的磷脂DHA的积累。方法:用表达EGFP的慢病毒(E3.5)的小鼠胚泡(E3.5),该慢病毒含有靶向MFSD2A或非编码序列(SCR)的shRNA,然后转移到假孕妇中。在E18.5时,称重胎儿,并收集其胎盘,大脑,肝脏和血浆。MFSD2A mRNA表达通过QPCR在大脑,肝脏和胎盘中测定,以及通过LC-MS/MS量化磷脂DHA。结果:与SCR对照相比,在E18.5(n = 45,p <0.008)时,靶向MFSD2A的shRNA在E18.5(n = 45,p <0.008)时将胎盘mRNA MFSD2A的表达降低了38%。MFSD2a在胎儿脑和肝脏中的表达不变。胎儿脑体重减少了13%(p = 0.006)。体重,胎盘和肝脏重量不受影响。胎儿脑磷脂酰胆碱和磷脂酰乙醇胺DHA含量较低,胎盘特异性MFSD2A敲低的胎儿含量较低。这些数据提供了机械证据,表明胎盘MFSD2A介导LPC-DHA的母体 - 饮食转移,这对于大脑生长至关重要。结论:LPC-DHA转运蛋白MFSD2A表达表达的胎盘特异性减少导致胎儿脑体重降低,胎儿大脑中磷脂DHA含量降低。
2019年冠状病毒疾病(Covid-19)大流行已导致M o o r e t h a n 6 m il l i o n d e a t h s w o a t h s w o r l d w id e(1),受免疫强度的人受到这种疾病的严重疾病特别影响的人(2)。针对严重的急性呼吸综合征2(SARS-COV-2)的疫苗接种是控制这一大流行的最有效措施,导致感染,住院和死亡率显着降低(3)。与普通人群相比,患有固体器官移植(SOT)的COVID-19患者经历了固体器官移植(SOT)的死亡率和延长病毒脱落(4-7)。但是,SOT的接受者被排除在这些疫苗的初始许可试验之外。肾脏移植受者(KTR)接受药理免疫抑制作为预防移植排斥的基本疗法,正处于对疫苗接种反应有缺陷的风险,因为其他疫苗已经发生了(8)。与疫苗试验中的免疫能力参与者相反(9),SOT受体的低比例对第二剂量的SARS-COV-2 Messenger RNA(mRNA)疫苗的阳性抗体反应。研究报告了在KTR中两剂MRNA疫苗后约5%至50%的抗体反应率的不同结果(10-15)。由于这种较低的反应,建议额外的主要射击(MRNA COVID-19疫苗的第三剂量,用于接受BNT162B2或助推器剂量的mRNA-1273)。几项已发表的研究报告了三剂量疫苗接种时间表的体液免疫原性,但只有少数人评估了细胞臂对疫苗介导的保护的贡献(16-18)。这些结果将使我们能够确定该方案是否能够在这些患者中实现广泛反应,并帮助我们辨别哪种类型的免疫抑制剂可能会导致疫苗反应的增加。
自从柔性薄膜发明以来,包装行业的发展达到了惊人的高度。通过制造实践对这些薄膜的利用不断创新,对最适合进一步增强其理想特性的广泛产品的需求不断增长。虽然柔性包装行业使用了许多聚合物,但最常见的是聚丙烯 (PP)、聚乙烯 (PE)、聚氯乙烯 (PVC)、聚对苯二甲酸乙二醇酯 (PET)。最近发生的最受欢迎的创新之一是将金属化薄膜引入柔性包装行业。通过在真空条件下在聚合物表面沉积一层极薄的铝蒸气,成品被证明具有更好的防水和防氧性能,并提供金属光泽的外观——非常像铝箔。能够提供铝箔所具有的一些关键特性,同时成本和皮重却低得多,这使得金属化薄膜成为食品和糖果领域的热门选择。聚酯和 PP 薄膜是生产这些高阻隔包装薄膜(金属化薄膜)最常用的基材。铸造 PP 薄膜正迅速成为包装行业首选的金属化基材。真空金属化铸造 PP 薄膜在行业中被称为 VMCPP 或简称为 MCPP。应用领域包括食品包装、化妆品包装、烟草和酒类包装,以及众多装饰应用。MCPP 薄膜的阻隔性能取决于薄膜表面金属附着力的质量,而这又取决于: