摘要背景:在人工智能 (AI) 应用于医疗保健领域时,可解释性是最受争议的话题之一。尽管人工智能驱动的系统已被证明在某些分析任务中表现优于人类,但缺乏可解释性仍然引发批评。然而,可解释性不是一个纯粹的技术问题,相反,它引发了一系列需要彻底探索的医学、法律、伦理和社会问题。本文对可解释性在医学人工智能中的作用进行了全面评估,并对可解释性对于将人工智能驱动的工具应用于临床实践的意义进行了伦理评估。方法:以基于人工智能的临床决策支持系统为例,我们采用多学科方法从技术、法律、医学和患者的角度分析了可解释性对医学人工智能的相关性。基于这一概念分析的结果,我们随后进行了伦理评估,使用 Beauchamp 和 Childress 的“生物医学伦理原则”(自主、仁慈、不伤害和正义)作为分析框架,以确定医疗 AI 中可解释性的必要性。结果:每个领域都强调了一组不同的核心考虑因素和价值观,这些因素与理解可解释性在临床实践中的作用有关。从技术角度来看,可解释性必须从如何实现和从发展角度来看有什么好处两个方面来考虑。从法律角度来看,我们将知情同意、医疗器械认证和批准以及责任确定为可解释性的核心接触点。医学和患者的观点都强调了考虑人类行为者和医疗 AI 之间相互作用的重要性。我们得出的结论是,在临床决策支持系统中忽略可解释性会对医学的核心伦理价值观构成威胁,并可能对个人和公共健康产生不利影响。结论:为了确保医疗 AI 兑现其承诺,需要让开发人员、医疗保健专业人员和立法者意识到医疗 AI 中不透明算法的挑战和局限性,并促进多学科合作。关键词:人工智能、机器学习、可解释性、可解释性、临床决策支持
注:*财务分析假设运营期/合同协议为 25 年。财务分析基于以下原则:设施所有者和运营商之间签订简单的“准入协议”,将授予后者运营权并向用户收取费用,而无需支付场地费用或支付象征性费用。**虽然假设的服务费水平因设施中的床位数量而异,但财务分析使用的假设如下:一级护理 - 每张床每月 28 美元,二级护理 - 每张床每月 138 美元,三级护理 - 每张床每月 207 美元。更多详细信息可在此处找到:亚洲城市发展倡议和宜昌市政府的预可行性研究。
Covid-19的大流行肯定教会了我们许多有价值的教训。它已经证明了生活的脆弱性以及我们将健康视为理所当然的频率。,它还向我们展示了在某些情况发生意外的事情以及与亲人不断沟通的重要性,以便他们了解我们的偏好和护理愿望是多么重要。因此,卫生部确实是及时提高以人为本护理的关注,并在道德和沟通领域提高卫生专业人员的技能和能力,这是整个人类医学实践至关重要的。这一第1版的国家预先护理计划(ACP)指导无疑是朝这个方向前进的重要一步。
抽象的物流和供应链管理是确定生产活动有效性和效率的过程,因此确定这些过程对提供卫生服务的影响很重要。方法论:在4个数据库中进行了叙事文献综述,用英语和西班牙语进行了元研究引擎。信息被组织到分析矩阵中,以识别与研究相关的信息。结果:选择了37篇文章进行审查。根据融合和主要主题,它们是在四个要点建立的:供应链中的成本,供应链中的物流,大流行,医院的药物管理以及手术室和行业的管理。结论:物流和供应链是充分提供卫生服务的重要因素。供应链管理是医院流程的重要组成部分,可以正确地提供医院用品的可追溯性并为用户提供安全护理。
现代医疗机构正在经历快速而根本的变化。医生,技术人员和其他医生的需求比以往任何时候都更高,并难以维持相同的护理水平 - 同时同时实施了新的临床和数据存储技术。医疗保健设施越来越复杂,那是在Covid-19迫使他们实施社会疏远和占用限制之前。
分散营养,支持发展和免疫力以及对营养不良和NCDS的控制 - 当今的生活方式以及由此产生的慢性病/疾病需要真正的,基于证据的阿育吠陀治疗方法/公式,才能以一种特定的解决方案来依赖于年龄,生活,生活方式和营养的需求,以综合的方式进行特定的解决方案。
这些进步发生在卫生系统面临诸多挑战的时候。例如,肥胖和心理健康问题日益严重,尤其是在儿童和年轻人中。我们需要做更多工作来管理健康不平等,消除不必要的差异,满足学习障碍或自闭症患者的健康需求。老年人口的虚弱需要谨慎管理,以防止不必要的住院或治疗。心血管疾病、呼吸系统疾病和癌症仍然是导致
1 Biotechnology 2504000053 Afjal Ansari imtiyaz ansari 49 70 1 2 biotechnology 2504000052 prenna tandon tandon tandon pradeep tandon 48 70 2 3 biotechnology 25040037 Khushi Shukla Anand Shukla 42 70 3 4 Biotechnology 2504000038 Bhupendra Kumar Jalam Singh 38 70 4 5 Biotechnology 2504000042 Vishwajeet Singh Manoj Kumar Singh 38 70 5 6 Biotechnology 2504000051 Satish Kumar Ramesh 38 70 6 7 Biotechnology 2504000022 Rubeena Abbas Sayed Ateek Abbas 37 70 7 8 Biotechnology 2504000023 Sohan Lal Srivastava Gopal Ji Srivastava 36 70 8 9 Biotechnology 2504000050 Aryan Varma Ashok Kumar先生36 70 90 9 10 Biotechnology 2504000043 Shreya Kushwaha Shishir Shishir Kushwaha Shishir Kushwaha 34 75 Kanaujia 33 70 11 Biotechnology 2504000024 Rukhsar Mohd Zahor 32 70 12 13 Biotechnology 2504000030 Subhankar Bhunia Tarun Bhunia 32 70 13 14 Biotechnology 2504000031 Riya Saini Hari Kumar Saini 32 70 14 15 Biotechnology 25040000466 Pallavi Srivastava Mahendra Kumar Srivastava 31 70 15 16生物技术2504000029 ????????????????????????????29 70 16 17 Biotechnology 2504000034 Manisha Singh Manoj Kumar Singh 28 70 17 18 Biotechnology 2504000025 Monika Surya Prakash 28 70 18 19 Biotechnology 25040033 Vivek Singh Shyam Kumar 28 70 19 20 Biotechnology 2504000027 Prienshu Singh Jagannath Prasad 25 70 20 21生物技术2504000039 Shanya Malviya Santosh Kumar Malviya 22 21 22 22生物技术2504000036 PRIYAM SRIVASTAV VINOD SRIVASTAV先生Vinod Srivastav 22 70 22 22 22 Suresh Kumar 20 70 24