摘要 - 动态场景中的移动对象细分(MOS)是一个重要的,具有挑战性但探索不足的重新搜索主题,以供自动驾驶,尤其是对于从移动的自我车辆获得的序列而言。大多数分割方法利用了从光流图获得的运动提示。但是,由于这些方法通常是基于从连续的RGB框架中预先计算的光流,因此这忽略了对间框架内发生的事件的时间考虑,因此限制了其识别其表现出相对静态性但在运动中确实在运动中表现出相对静态物体的能力。为了解决这些局限性,我们建议利用事件摄像机以更好地理解视频,从而在不依赖光流的情况下提供了丰富的运动提示。为了培养该领域的研究,我们首先引入了一个名为DSEC-MOS的新型大型数据集,用于从移动自我车辆中移动对象进行分割,这是同类的第一个。为了进行基准测试,我们选择了各种主流方法,并在我们的数据集上严格评估它们。随后,我们设计了一种能够利用事件数据的新型网络。为此,我们将事件的临时事件与空间语义图融合在一起,以区分真正的移动对象和静态背景,并围绕着我们感兴趣的对象增加了另一个密集的监督。我们提出的网络仅依靠用于培训的事件数据,但在推理过程中不需要事件输入,从而使其直接与仅限框架方法相媲美,并且在许多应用程序情况下都可以使用更广泛的使用。源代码和数据集可公开可用:https://github.com/zzy-zhou/dsec-mos。详尽的比较突出了我们方法对所有其他方法的显着性能提高。
抽象目的是将富含抗完全胶质素的神经胶质瘤激活1(LGI1)脑炎的患者与神经退行性[阿尔茨海默氏病(AD),Creutzfeldt – Jakob疾病(CJD)和原发性精神病(Psy)disororders(Psy)disororders进行比较。患有LGI1脑炎的方法是从2010年至2019年之间的法国参考中心数据库中追溯选择的,如果可以使用CSF进行生物标志物分析,包括Tau(T-TAU),磷酸化的TAU(P-TAU),Amyloid-BetaAβ1-42,Neurofilofiliments Lights(NF)(NF)(NF)作为常规实践的一部分发送以进行生物标志物测定的样本,并被正式诊断为AD,CJD和PSY,用作比较器。结果二十四名LGI1脑炎患者与39 AD,20 CJD和20 PSY进行了比较。在LGI1脑炎和PSY患者之间,在T-TAU,P-TAU和Aβ1-42水平中没有观察到显着差异。LGI1脑炎(231和43 ng/L)的T-TAU和P-TAU水平明显低于AD(621和90 ng/L,P <0.001)和CJD患者(4327和4327和4327和55 ng/L,P <0.001和P <0.001和P <0.01)。NF L浓度(2039 ng/L)与AD相似(2,765 ng/L),与PSY相比(1223 ng/L,P <0.005),但明显低于CJD(13,457 ng/l,p <0.001)。较高的NF L。可以得出CSF生物标志物水平和临床结果之间的相关性。结论LGI脑炎患者的NF L水平高于PSY,与AD相当,并且在发出癫痫发作时,提示与癫痫发作有关的轴突或突触损伤时甚至更高。
Nelson Coast temperate forests T 100.00 78.21 78.21 5.46 100.00 Richmond temperate forests T 100.00 36.63 36.63 4.95 100.00 Campbell Island M 100.00 23.43 23.43 3.65 100.00 South Island temperate forests T 100.00 19.96 19.96 4.38 100.00 Fiordland temperate forests T 100.00 99.09 99.09 4.13 100.00 Three Kings-North Cape M 100.00 0.15 0.15 2.14 100.00 Bounty and Antipodes Islands M 100.00 28.77 28.77 2.03 100.00 Westland temperate forests T 100.00 81.68 81.68 1.98 100.00 Rakiura Island temperate forests T 100.00 77.63 77.63 0.63 100.00 Kermadec Island M 100.00 100.00 100.00 0.51 100.00 Chatham Island temperate forests T 100.00 5.72 5.72 0.30 100.00 Antipodes Subantarctic Islands tundra T 86.56 100.00 100.00 0.28 86.56 Kermadec Islands subtropical moist forests T 100.00 100.00 100.00 0.01 100.00 Important Bird and Biodiversity Areas (IBAS)2没有IBA的数据。