增加的保护行动以保护更多的栖息地和物种正在激发有关不同保护区的相对有效性的激烈争论。在这里,我们回顾了比较由土著人民和/或当地社区管理的国家和地区管理的保护区有效性的文献。我们认为这些可能是很难进行的。强大的比较案例研究很少见,产生它们的认知社区被语言,纪律和地理破裂。此外,这些不同形式的地面保护形式之间的区别可能会被模糊。我们还必须谨慎对待这种比较的价值,因为不同形式的保护对人的后果和非人类性质是凌乱而多样的。的效率度量,此外,专注于保护性能的特定维度,这可以忽略其他重要的维度。使用这些警告,我们报告了多个研究小组观察到的发现,这些研究小组着重于本文中汇编的报告和问题。数据倾向于基于社区或共同管理的治理安排,以使人们和自然产生有益的外观。这些安排通常伴随着农村群体与强大国家之间的斗争。发现是高度特定的,全球概括的价值有限。
材料在一次使用后就会永久损坏,不适合重复使用。最近,结构材料 (或超材料) 被设计成通过弹性屈曲不稳定性来捕获能量。[1–5] 这种结构能量捕获机制具有可扩展性和可逆性,使结构材料可重复使用。[3] 尽管如此,弹性能量捕获机制具有固定的能量吸收能力,而与应变率无关。[3] 希望开发一种可重复使用的结构材料,这种材料在很宽的应变率范围内表现出更大的能量吸收能力,以增强振动和冲击保护性能。为了实现这一目标,我们假设可以通过结合速率相关的材料耗散机制来增强结构材料的能量吸收能力。 [3,6–8] 虽然结构材料的概念是基于材料和几何形状之间的相互作用,但大多数研究都集中在机械不稳定性而非材料非弹性的非线性效应上。[5] 最近,很少有研究应用粘弹性来调节多稳态超材料的屈曲模式。例如,Janbaz 等人 [9] 展示了如何使用由两个横向连接的梁组成的双梁来实现应变率相关的机械超材料,其中一个是超弹性的,另一个是粘超弹性的。
摘要 - 碰撞能量显着的圆形粒子加速器超出LHC,需要具有较高磁场的磁铁。对这种磁体的淬火保护是出于两个主要原因。首先,高能量密度和相对较高的淬火需要高性能的淬火保护系统。第二,在预计将运行的加速器机器中保护系统的集成数十年,要求易于整合,健壮和冗余元素。最近提出了一种名为Secondary Cliq(S-CLIQ)的新的且有前途的保护方法。它依赖于辅助正常线圈,这些线圈与线圈电隔离以保护但在磁性上耦合到它们。在磁铁淬灭检测时,耦合线圈具有双重功能:首先,它们会在超导体中引起高耦合损失,这足以使大多数绕组在几个Mil-mil-Liseconds中传递到正常状态;其次,他们通过磁耦合提取磁铁存储的一部分。在这项工作中,提出了基于放置在赛道磁铁顶部和底部的辅助线圈的S-CLIQ系统,并显示了由薄1毫米2线制成的。表明,在热点温度和地面峰值电压方面,淬灭保护性能优于替代方法,例如能量提取,淬火加热器和CLIQ。
摘要:大麻素在认知和运动障碍的治疗方法中引起了人们的关注,这是神经系统疾病的特征。迄今为止,已经从大麻sativa中提取了100多种植物大麻含量,其中一些已显示出神经保护性能以及影响突触传播的能力。在这项研究中,我们研究了鲜为人知的植物大麻素,大麻诺(CBNR)对神经元生理学的影响。使用NSC-34运动神经元细胞系和下一代测序分析,我们发现CBNR影响与突触组织和专业化相关的CBNR突触基因,包括与细胞骨架和离子通道有关的基因。特别是钙,钠和钾通道亚基(Cacna1b,cacna1c,cacnb1,grin1,scn8a,kcnc1,kcnj9),以及与NMDAR相关的基因(AGAP3,Syngap1)和CABP1,CABP1,CABKP1,CABKVV)细胞骨架和细胞骨架相关基因(ACTN2,INA,TRIO,MARCKS,MARCKS,MARCKS,BSN,RTN4,DGKZ,HTT)。这些发现突出了CBNR在调节突触发生和突触传播中所起的重要作用,这表明需要进一步研究来评估CBNR在治疗许多神经疾病中表征运动障碍的突触功能障碍中的神经保护作用。
静电放电 (ESD) 引起的损坏是集成电路的主要失效之一。在当今集成电路所采用的 7nm FinFET 工艺中,由于 FinFET 栅极氧化层的厚度减小以及高 k 电介质的可靠性较低,在静电放电 (ESD) 冲击下极其脆弱[1-3],并且遭遇非致命的 ESD 冲击后,ESD 保护性能会逐渐下降[4,5]。一些 ESD 建模和仿真技术已被用于 FinFET 工艺,以帮助分析 ESD 冲击下的 ESD 保护特性[6-9]。ESD 保护二极管被认为是一种很有前途的 ESD 保护器件[6-8]。具有高鲁棒性的二极管串硅控整流器 (DSSCR) 也被认为是以前技术节点的 ESD 保护装置 [ 10 – 15 ],但由于其高漏电和闩锁的较大回弹,它不再适用于 7 nm 技术。FinFET 工艺的 ESD 设计仍然是一个巨大的挑战。目前还没有一种具有足够低触发电压 (Vt) 和高故障电流 (It2) 的高鲁棒性 ESD 保护装置。在本文中,我们提出了一种基于 7 nm FinFET 工艺的新型硅控整流器嵌入式二极管 (SCR-D)。制造并分析了具有不同关键设计的这种保护的特性。
在COVID-19大流行期间,基于聚丙烯基的个人保护设备(PPE)的使用显着增加到超过一千万吨。通常,一次使用后,大多数PPE都会被丢弃,以防止用户自感染和传播剂的传播。但是,为了在不损害PPE保护性能的情况下最小化塑料废物,探索新的可重复使用或寿命更长的材料至关重要。在这里,提出了PPE的可见光可见抗菌光动力染料涂层。在这种情况下,发现通过引入两个硫酚单元衍生而来的硫酚甲基甲基蓝(TMB)涂层,发现显示出较高的抗菌活性。TMB被整合到旋转印刷悬浮液中,这是一种基于硝酸盐的商业印刷矩阵。优化了粘合剂中TMB的浓度,并发现5%TMB适用于涂层PPE,可在白光光辐照6小时后将革兰氏阳性和阴性细菌的数量降低99.99%。根据EN 14683测试的细菌效果效率和透气性,证实了TMB涂层不会影响过滤器的性能。因此,这种抗菌光动力染料涂层技术为PPE的更安全,更扩展的使用以及PPE产生的塑料废物的减少提供了有希望的解决方案。
摘要 半导体量子点 (QDs) 作为高性能材料,在当代工业中发挥着重要作用,这主要是因为它们具有高光致发光量子产率、宽吸收特性和尺寸相关的光发射。使用 QDs 作为微光学应用的构建块来构建定义明确的微/纳米结构至关重要。然而,制造具有设计功能结构的稳定 QDs 一直是一个挑战。在这里,我们提出了一种在具有特定保护性能的混合介质中对所需 QDs 进行三维直接光刻的策略。丙烯酸酯功能化的混合前体通过超快激光诱导多光子吸收实现局部交联,实现超越衍射极限的亚 100 纳米分辨率。印刷的微/纳米结构具有高达 600 ◦ C 的热稳定性,可以转化为体积收缩的无机结构。由于 QDs 封装在密集的硅氧分子网络中,功能结构表现出良好的抗紫外线照射、腐蚀性溶液和高温稳定性。基于混合三维纳米光刻技术,可制备双色多层微/纳米结构,用于三维数据存储和光学信息加密。本研究为制备所需的量子点微/纳米结构提供了一种有效的策略,支持开发稳定的功能器件应用。
接受:2023年3月28日摘要:金属结构的有效和安全腐蚀抑制剂的发展仍然是一个紧迫的问题。本研究的目的是评估基于合成和生物表面活性剂,废物甘油(生物柴油的副产物)和低毒性硫代硫磺酸盐对ST3钢腐蚀的抑制作用。表明,在中等NaCl(0.1和1.0 wt%)的20°C下,最佳保护性能具有生物表面活性剂BS-1的混合物,其二80(1:5和1:3,W/W,W/W) - 0.1%NaCl的保护度分别为69和61%。温度升高到50°C,保护度降至63%和48%。废物甘油(5 g·dm -3)中的1%NaCl也证明有效性,增加了ST3钢铁保护高达86%。使用生物表面活性剂和废物甘油时,由于抑制剂官能团和铁离子之间的氢键形成的金属表面上的膜可能会降低钢的腐蚀速率。在20°C下,生物表面活性剂BS-2与硫代硫酸盐TS-1,TS-2(比率0.5和0.25 g·dm -3)的组成有助于钢制保护99%。因此,观察到动作协同作用,因此为了有效的钢制保护,建议将其他协同作用用于组成。结果表明,新的“绿色”腐蚀抑制剂的生物表面活性剂,生物技术产物的组成前景。关键字:生物表面活性剂,腐蚀抑制剂,鼠李糖脂,硫代硫酸盐,海藻糖脂质,废物甘油
木质素是地球上第二大的生物聚合物,有可能成为石油衍生材料的替代品。它由于其芳香结构以及众多酚类,酮和分子内氢键的存在而表现出出色的UV吸收能力。由于其复杂的性质,重要的是要研究其性质,这是朝着木质素重价的非常重要的一步。揭示其结构复杂性可以更好地研究其对最终木质素材料特性的影响。在我们的研究中,我们使用了两种不同的牛皮纸木质素:商业分析牛皮纸木质素(AL)和工业木质木质木质蛋白(AL)和基于二甲烷二甲酸(二硫酸酯)的BPA(Bisphenol a) - 无聚合物涂料的BPA(Bisphenol A)中的UV-PROTECT添加剂。KL和Al的最大添加为2 wt%。详细介绍了两个木质素样品(组成分析,灰分含量,摩尔质量和多分散性,表面形态,热性质以及羟基含量的定量测量)。我们提出了木质素对涂料的质地和热性能的影响。最后,我们研究了木质素作为通过UV-VIS电子吸收光谱的增值UV保护成分的应用。kl纯度较高,脂肪族OH的数量较高,在聚合物基质中比Al木质素具有更好的分散体,而Al木质素在聚合物基质中具有更大的凝聚。更好的色散导致在KL制成的涂层中产生更光滑的表面。最后,证明了KL添加剂对涂料材料的光保护性能的显着和显着影响。这些结果表明,可用的工业木质素对可持续和增值产品的价值有潜在的应用和机会。
摘要简介:大麻二酚(CBD)是壁va大麻的非精神活性成分,由于其抗惊厥药和神经保护性能,在神经系统条件下显示出治疗潜力。这项研究系统地修改了有关神经病学中CBD指示的文献。目的:分析有关CBD在神经系统疾病中使用的证据,其作用机理,临床功效和安全性。方法论:对已发表的Scielo,Lilacs和Google学术基础进行了定性评论,涵盖了2008年至2023年的出版物。与CBD相关的描述符和神经病学,选择30项相关研究进行详细分析。结果和讨论:CBD在难治性癫痫中表现出有效性作为辅助治疗,减少了Dravet和Lennox-Gastaut综合征的癫痫发作。在帕金森氏病中,它改善了生活质量而不会加剧运动症状。在多发性硬化症中,尽管与THC结合进行了更多研究,但分离的CBD具有神经保护势和免疫调节剂。在自闭症谱系障碍中,它显示出行为改善。其作用机理涉及多种神经化学途径,包括调节血清素能和vany型受体。安全性概况是有利的,但是存在药物相互作用的风险。最终考虑:CBD是神经病学中有前途的替代方案,但是面临着诸如小样本和缺乏剂量标准化的研究之类的局限性。法律和监管问题会影响获得治疗的机会。未来的研究应确定理想剂量,评估长期安全性,并加深对行动机制的理解,以有效地整合CBD在临床实践中。关键字:大麻二酚; CBD;神经病学;癫痫;帕金森氏病;多发性硬化症;自闭症。