镜头或防护玻璃是否受到污染?飞溅会污染CO 2机器的焦点镜头。镜头监视您的镜头,并在必要时关闭梁。好处:仅需在必要时对镜头清洁时间进行简短的停车时间,并且在真正必要的情况下只需要更换保护玻璃。在线验证保护性玻璃状态可确保您始终知道固态激光器的保护玻璃的状况,并且可以保持一致的质量。
用24 kW的Trudisk激光器进行了实验,具有1030 nm波长和双核纤维,以及适用于24 kW的扫描仪光纤(此光学的特朗普名称为PFO 33(KF023)(KF023),[Pricking et al(2022)])。BrightlineWeld技术允许在100 µm内芯和400 µm外芯之间自由拆分功率,从而稳定钥匙孔并最大程度地减少溅射形成[Speker等人(2018)]。在此提出的实验中,使用了70%的核心与环比率,从而产生平滑的焊缝。放大倍率为3.2,内芯的焦点直径为320 µm,而外芯的焦点直径为1285 µm,相对于内芯,雷莱基长度为6 mm。使用此设置,工作场也很大,工作距离也很大,最大程度地减少了溅射对保护玻璃的影响,并且内核的斑点大小是焊接的典型特征。
利用太阳能电力利用的主要技术是太阳能光伏。太阳PV细胞通常由硅制成,将阳光直接转化为电。多个电池连接在太阳能电池板或模块中,将细胞包裹在保护玻璃,金属和/或塑料中。面板可以单独使用或连接以形成数组。除了太阳能电池板或阵列外,光伏系统还包括安装结构,一种逆变器,用于将生成的直流电流(DC)转换为用于交替电流(AC)电力,用于局部电力,电表,其他电气配件,以及接线以连接系统组件。太阳能光伏系统通常被视为分布式能源 - 主要或中型功率来源,这些电源主要连接到最终用户附近的分销功率电网的较低电压水平。太阳能PV被认为是间歇性或可变能源,因为可产生能量的阳光量取决于位置,一天中的时间,一年的季节,
重要安全信息和警告!在阅读《快速入门和安全指南》和《用户指南》之前,请勿操作设备。确保用户随时可以查阅《快速入门和安全指南》! Profoto 产品适合室内使用!请勿将设备放置或使用在可能暴露于潮湿、极端电磁场或有易燃气体或灰尘的地方!请勿将设备暴露在滴水或溅水的地方。请勿将任何装有液体的物体(如花瓶)放在设备上或附近。请勿将设备暴露在潮湿环境中的剧烈温度变化中,因为这可能会导致设备中出现冷凝水。请勿改装、拆卸、打开、掉落、挤压、刺穿、加热至 60°C (140°F) 以上、焚烧或撕碎电池。请勿使用未配备保护玻璃盖或保护网格的闪光灯头。如果玻璃盖明显受损,以至于其有效性受到损害(例如出现裂缝或深划痕),则应在使用设备前更换玻璃盖。如果灯泡受损或热变形,则应更换灯泡。将灯泡放入灯座时,请确保不要用裸手触摸灯泡,务必戴上防护手套,并在放置灯泡之前让设备冷却。在对闪光设备进行维护时,务必戴上防护手套和护目镜。如果产品外壳破裂,请立即停止使用产品,取出电池并联系 Profoto 服务!闪光产品中使用的电容器类型不可避免地会破裂。如果发生这种情况,闪光产品可能会散发出刺鼻的气味和烟雾。避免将排放物喷到脸上。如果排放物进入眼睛或嘴巴,请用水冲洗。排放物无毒。如果电解液泄漏到皮肤上,请用水和肥皂冲洗。不要吞下电解液。使用支架时,务必确保设备牢固固定。 Profoto 产品仅用于图像捕捉,例如摄影和摄像。不适用于任何其他应用。
图1.1 - AM零件的照片:(a)推进器歧管,该歧管展示了形成内部途径和空腔的能力; (b)晶格立方体,既展示了AM的重量减轻和强度能力; (c)由钛制造的钥匙扣。这些照片不仅展示了AM的实际方面,还展示了该技术的艺术可能性。............................................................................................... 1 Figure 2.1 – Graph illustrating the different material processing techniques and the time for the interaction [34]... 11图2.2 - 直接激光沉积(DED)系统的示意图。......................................................................... 11 Figure 2.3 – A detailed schematic of a direct energy deposition (DED) system......................................................... 12 Figure 2.4 – Schematics of early patents used for the development of a coaxial head: (a) Gale et al.[24],(b)Schaefer等。[25]和(c)Livsey等。[27]。............................................................................................................. 13 Figure 2.5 – Patents of coaxial nozzle designs for comparative purposes: (a) Hammeke [28] and (b) Buongiorno [30]............................................................................................................................................................................... 14 Figure 2.6 – Simplified schematic for a coaxial head with two configurations: axial spray (left) and side spray (right) [33]............................................................................................................................................................................... 16 Figure 2.7 – Mapping of the parameters and the operating region for an DED design [51]....................................... 17 Figure 2.8 – Visual aid of a proposed beam routing system exaggerating the Gaussian profile...................................................................................................................................................................................................................................................................................................................................................................................................... reseation图证明了辐射的不同材料与波长的反射率[34]。.............................................................................................................................................................................. 20 Figure 2.10 – Early powder delivery patent schematics by Kenneth [81]................................................................... 23 Figure 3.1 – Design algorithm for DED machine design used to as a final check for the BenchDED....................... 30 Figure 3.2 – The experimental setup used in the development of the preliminary laser system.此实验设置用于确定使用两镜头配置与200瓦ND ND:YAG模块结合使用的最大点大小。The system was designed to be horizontal so that the substrate could be moved to the waist of the beam.................................................................................................................................................... 34 Figure 3.3 – Mirror beam routing system for DED............................................................................... 46 Figure 3.14 – Final design used in the research..................................................................................................... 35 Figure 3.4 – Fiber coupling systems............................................................................................................................ 36 Figure 3.5 – Schematic and photo of the first PDS prototype..................................................................................... 40 Figure 3.6 – Photos of a powder delivery system with pneumatics............................................................................. 41 Figure 3.7 – Photo of a mounted powder delivery system that used gravity to provide a consistent powder flow..... 41 Figure 3.8 – Schematic of the CAD coaxial nozzle..................................................................................................... 43 Figure 3.9 – 3D printed coaxial nozzle mock-up......................................................................................................... 43 Figure 3.10 – Testing optical assembly........................................................................................................................ 44 Figure 3.11 – Final optical assembly design................................................................................................................ 44 Figure 3.12 – Exploded view of the aluminum CNC manufactured coaxial nozzle.................................................... 45 Figure 3.13 – 2D side view of the coaxial nozzle CAD assembly........................................................................................................... 46 Figure 4.1 – Compiled and labeled photos of the BenchDED setup........................................................................... 51 Figure 4.2 – Optical microscope images at a magnification of x250 for varying the laser power density on SS316 substrates...................................................................................................................................................................... 55 Figure 4.3 – Localized vaporization of material experiments, with (a) showing a magnification of Figure 4.2 (d) and (b) showing a magnification of Figure 4.2 (e)............................................................................................................. 56 Figure 4.4 – Graph of melt pool diameter development in relation to power density................................................. 57 Figure 4.5 – The result of different scanning speeds and laser powers....................................................................... 58 Figure 4.6 – A magnified image of the outermost track from scanning rate experiments for a laser power of 125 W and scanning speeds of 50 mm/sec (left) and 200 mm/s (right).................................................................................. 59 Figure 4.7 – A comparison of the real images, versus the topology and depth mapping............................................ 60 Figure 4.8 – Optical images used to analyze the multi-pass deposition results........................................................... 61 Figure 5.1 – A photograph of the BenchDED chamber.绿色来自保护玻璃,该防护玻璃阻塞了所有红外辐射。............................................................................................. 69......................................................................................................................................................... 66 Figure 5.2 – Schematic of BenchDED G code toolpath.