1 Antofagasta的能源开发中心,Antofagasta大学,AV。Antofagasta大学02800,Antofagasta 1271155,智利; markus.bergendahl.freddes@ua.cl(M.B. div>); susana.leiva.gujardo@ua.cl(s.l.-g.); carlos.portillo@unantof.cl(C.P. div>); douglas.olivares@unantof.cl(D.O.) div>2个工程系,位于Atallurgy,Atacama University,AV。 div>Antofagasta大学02800,Antofagasta 1271155,智利; luis.caceres@unantof.cl 4 Arturo Prat University,AV。 div>Arturo Prat 2120,Iquique 1110939,智利; notoro@unap.cl 5 Qica de los材料系,Qualica andBiologí学院,圣地亚哥大学,AV。Libertador B. O'Higgins 3363,圣地亚哥9170022,智利; victor.jimenez@usach.cl(V.J.-A。 div>); maritza.paez@usach.cl(M.P.) div>* corsondence:felipe.galleguillos.madrid@unantof.cl(f.m.g.m.m. )); alvaro.soliz@uda.cl(A.S.)
摘要:连续体(BIC)中的结合状态在纳米光谱领域引起了很多关注,因为它们可以捕获光子而不会损失。最近,证明了在高RI平板结构上负载的低反射指数(RI)波导以支持BIC。但是,由于这些BIC的意外性质,需要严格控制结构参数。在这里,我们提出了一个新的结构,该结构由两个垂直耦合的波格式的波格式升压,该结构加载在高RI平板上。该结构支持对称性保护的BIC(SP-BIC),不需要严格控制几何参数。这样的SP-BIC还可以具有重分结构中的绝对高质量因素,可以利用其用于超翼带宽空间和光谱过滤器。我们的作品开辟了一种在实现纳米光子电路和设备的集成光子平台上利用BIC的新方法。
Rubrik(NYSE:RBRK)正在执行确保世界数据的任务。使用零信任数据安全™,我们帮助组织对网络攻击,恶意内部人员和操作中断实现业务弹性。Rubrik Security Cloud,由机器学习提供动力,可在企业,云和SaaS应用程序中确保数据。我们帮助组织维护数据完整性,提供可承受不利条件的数据可用性,不断监控数据风险和威胁,并在攻击基础架构时使用其数据恢复业务。
nielzebua02@gmail.com,ander.dawolo@gmail.com,asokhiwazega@gmail.com摘要。 全球环境变化的步伐和人类活动的加剧对海洋生态系统造成了巨大压力,威胁着许多物种的可持续性,这些物种对生态系统和沿海社区的经济都很重要。 在这种情况下,本研究旨在评估遗传技术在濒危海洋物种保护中的应用,重点是环境DNA(EDNA)监测,CRISPR基因工程技术和人群遗传分析。 使用的方法是一项文献综述,该综述研究了与遗传技术有关的当前学术资源及其在保护方面的实施。 的发现表明,埃德娜(Edna)是物种和栖息地监测中的高效工具,并且在特定情况下(例如拿破仑鱼和拉贾·安帕特(Raja Ampat)的绿海龟)已成功。 相比之下,尽管面临重大的监管和道德挑战,但CRISPR技术具有提高物种遗传弹性的潜力。 这项研究的含义强调了需要强大的政策支持和国际合作,以应对这些挑战,并在未来更有效的保护策略中优化遗传技术的使用。 关键词:人群遗传分析,埃德娜,海洋物种保护,CRISPR遗传工程,遗传技术。 Abltrak。 metode yang digunakan adalah tinjauan文学文学扬·蒙卡吉(Yang Mengkaji)nielzebua02@gmail.com,ander.dawolo@gmail.com,asokhiwazega@gmail.com摘要。全球环境变化的步伐和人类活动的加剧对海洋生态系统造成了巨大压力,威胁着许多物种的可持续性,这些物种对生态系统和沿海社区的经济都很重要。在这种情况下,本研究旨在评估遗传技术在濒危海洋物种保护中的应用,重点是环境DNA(EDNA)监测,CRISPR基因工程技术和人群遗传分析。使用的方法是一项文献综述,该综述研究了与遗传技术有关的当前学术资源及其在保护方面的实施。的发现表明,埃德娜(Edna)是物种和栖息地监测中的高效工具,并且在特定情况下(例如拿破仑鱼和拉贾·安帕特(Raja Ampat)的绿海龟)已成功。相比之下,尽管面临重大的监管和道德挑战,但CRISPR技术具有提高物种遗传弹性的潜力。这项研究的含义强调了需要强大的政策支持和国际合作,以应对这些挑战,并在未来更有效的保护策略中优化遗传技术的使用。关键词:人群遗传分析,埃德娜,海洋物种保护,CRISPR遗传工程,遗传技术。Abltrak。metode yang digunakan adalah tinjauan文学文学扬·蒙卡吉(Yang Mengkaji)全球环境变化的速度和人类活动的加强对海洋生态系统施加了巨大压力,威胁着许多重要物种对生态系统和沿海社区经济的可持续性。在这种情况下,本研究旨在评估遗传技术在濒危海洋物种保护中的应用,重点是监测环境DNA(EDNA),CRISPR遗传工程技术和种群遗传分析。的发现表明,埃德娜(Edna)是监测物种和栖息地的非常有效的工具,并且在特定情况下(例如拿破仑鱼和拉贾·安帕特(Raja Ampat)的绿海龟)已成功。相反,尽管存在重大的监管和道德挑战,但CRISPR技术提供了增加物种遗传抗性的潜力。这项研究的含义强调了需要强大的政策支持和国际合作来克服这一挑战,并在未来更有效的保护策略中优化了对遗传技术的使用。Div>关键词:人口遗传分析,EDNA,海洋物种的保护,CRISPR遗传工程,遗传技术
项目团队的其他成员 Adrien Basdevant(法国执业律师) Raffaele Battaglini(意大利执业律师) Vincent Danos(法国教授) Primavera de Filippi(法国研究员) Michele Marchesi(意大利教授) William McKechnie(爱尔兰法官) Denis Philippe(比利时教授) Pascal Pichonnaz(瑞士教授) Ernst Steigenga(荷兰执业律师) Teresa Touriñán(西班牙土地注册官) Jos Uitdehaag(荷兰执业律师) Jasper Verstappen(荷兰执业律师) Aura Esther Vilalta Nicuesa(西班牙教授) Jacques Vos(荷兰注册官) Aneta Wiewiórowska-Domagalska(波兰教授) Christopher Wray (英国执业律师) Filippo Zatti (意大利教授) Fryderyk Zoll (波兰教授)
建议3.1:技术和生物多样性利益相关者应使用特定的议程为合作会议(例如研讨会,焦点小组和其他共同创建格式)开发有针对性的机会,以解决该文档和其他类似文档中概述的需求和建议,并特别关注贫穷的经济体或区域,并与North-South-South-South-South-South-South-South-South-South-South-South-South和Southsouth合作。
加拿大帝国商业银行加勒比分行举办“点燃创新”数据科学与人工智能网络研讨会 2024 年 7 月 19 日星期五 - 2024 年 7 月 5 日星期五,在巴巴多斯的沃伦斯大宅成功举办了“点燃创新”数据科学与人工智能客户演示。由加拿大帝国商业银行加勒比分行技术团队牵头,此次混合活动深入探讨了人工智能 (AI) 在增强银行业务和业务方面的重要作用。演示吸引了来自线下和线上的多样化观众,确保了广泛的可访问性和互动性。此次活动由企业客户、IT 利益相关者和政府官员参加,提供了绝佳的交流机会并促进了行业主要参与者之间的合作。与会者有机会与演讲者互动,参与互动问答环节,并获得有关如何将人工智能融入其整体业务战略的实践知识。此次活动重点介绍了人工智能的快速发展,其中包括个性化客户服务、内容创建、数据提取和竞争对手监控等关键举措。网络研讨会的主题是“如何让人工智能 (AI) 和数据科学为您和您的企业服务”,全面概述了人工智能在现代商业中发挥的关键作用。会议强调了人工智能在提高客户便利性和效率方面的重要性,并说明了企业如何利用人工智能来简化运营、降低成本和推动创新。加拿大帝国商业银行高级数据科学家 Stephan Barrow 谈到了银行业务的好处,他强调,自 2019 年以来,该银行一直在使用预测分析和软件开发来创建一个成功的数字贷款渠道,该渠道由数据科学和自动化支持,提供 15 分钟的贷款。研讨会的一个重点是受 COVID-19 疫情推动的网上银行的加速采用。这场疫情不仅凸显了数字解决方案的必要性,也为更加无缝和用户友好的银行体验铺平了道路。加拿大帝国商业银行加勒比分行已经接受了这一转变,利用人工智能提供创新解决方案,满足客户不断变化的需求。主要演讲人、客户产品盈利战略高级经理 Quinn Weekes 分享了他对人工智能在银行和业务转型中的作用的宝贵见解。Weekes 强调,与普遍看法相反,人工智能最好与人类输入和知识应用协同使用,以减少员工工作量并提高效率。在解决人们对人工智能取代人类工作的担忧时,Weekes 向与会者保证,人工智能旨在增强人类能力,而不是取代人类。他强调,人工智能可以接管重复性任务,让人类员工专注于工作中更具战略性和创造性的方面。此外,他强调了银行对数据保护的承诺,
自然景观容纳大量碳。该碳在地上存储在树木,植物和其他植被以及根,生物量和有机土壤物质中。被称为“碳库存”,如果自然土地受到干扰或转化为发展,则可以将自然土地的碳释放到大气中。自然土地不仅对已经存储在其中的碳,而且对于它们隔离或将碳从大气中取出的能力而言都是有价值的。每年我们的自然景观都会吸收大量碳,从本质上将二氧化碳从大气中吸收,并将其添加到现有的天然碳库存中。如前所述,目前森林吸收了所有美国温室气体排放量的近13%。
Anil Kumar摘要印度以其丰富的生物多样性而闻名,由于栖息地破坏,偷猎,非法贸易和气候变化而面临野生动植物保护的重大挑战。本研究论文批判性地研究了为保护印度野生动植物而建立的法律框架,重点介绍了关键立法,例如1972年的《野生动植物保护法》,1980年的《森林保护法》和2002年的《生物多样性法》。尽管这些法律在创建保护区和规范野生动植物活动方面至关重要,但其有效性受到了几个挑战的阻碍。关键问题包括由于资金有限,人力不足以及执法机构缺乏培训而导致执法不足。腐败和政治干预进一步阻碍了执法。此外,社会经济因素,例如当地社区对森林资源的依赖,也会导致非法活动和冲突。快速的城市化和基础设施发展也导致栖息地破碎和退化。为了应对这些挑战,本文提出了一种多方面的方法,涉及通过更好的资源和培训,改善机构间协调以及积极的社区参与保护工作来加强执法机构。技术进步(例如GIS,遥感和野生动植物取证)被建议增强监测和保护。建议进行法律改革,更严格的处罚和简化的司法程序来阻止野生动植物犯罪。将保护与可持续发展,促进生态旅游,对当地社区的替代生计以及培养公众意识的替代生计对于长期成功至关重要。通过采用这些全面的战略,印度可以增强其野生动植物保护工作的有效性,并确保保存其宝贵的生物多样性。Keywords: Wildlife conservation, legal frameworks, wildlife protection act, forest conservation act, biological diversity act, habitat destruction, poaching, illegal wildlife trade, biodiversity, enforcement challenges, conservation strategies, sustainable development, community involvement, technological advancements, wildlife monitoring, policy reforms, India, environmental law, eco-tourism, international cooperation Introduction India, one of the world's Megadiverse国家拥有一系列非凡的动植物。它的巨大而多样化的生态系统,从西高止山脉的茂密森林到塔尔沙漠的干旱景观,支持许多物种,其中许多物种是地方性的,并且受到极大的威胁。尽管印度丰富的生物多样性,但它仍面临着人为活动的严重威胁,例如栖息地破坏,偷猎,非法野生动植物贸易和气候变化(Kalrai等,2023b)[4]。有效的野生动植物保护对于维护这些自然宝藏至关重要,并且在这些努力中,强大的法律框架起着关键作用。印度野生动植物保护法的演变反映了人们对保留国家自然遗产的重要性的越来越多。从历史上看,印度野生动植物保护的法律框架始于1927年的《印度森林法》,该法主要旨在规范剥削森林资源而不是保护野生动植物。通过制定1972年《野生动植物保护法》,这是一项具有里程碑意义的立法,为野生动植物及其栖息地提供了全面的保护。该法案为建立保护区,狩猎规范和禁止濒危物种的贸易(《野生动植物(保护)法》,1972年,制定了法律基础。进一步的进步包括1980年的《森林保护法》,该法对非森林土地的转移施加了限制,从而促进了栖息地保护(1980年)。2002年的《生物多样性法》旨在保护生物多样性,促进其组件的可持续使用并确保
为了做出这样的证明,必须首先定义与人工智能系统相关的规范(理想情况下,将集体审议过程的意见与相关利益相关者的意见结合起来,确定适当的风险阈值和定义)。为了为作为现实世界网络物理系统一部分运行的人工智能系统定义安全规范,必须定义系统部署的环境和上下文的动态数学模型。然后,规范可以对环境中发生的事情提出要求(例如某种正式定义的“伤害”不会以高概率发生),而不是仅指人工智能系统本身的输入和输出之间的关系的正式规范(这足以定义一些非平凡的属性,如“对抗性鲁棒性”,但不能定义任何物理类型的安全性)。为了被视为部署环境中可能发生的情况的“基本事实”,作为系统认证的信任根源,这些数学模型必须经过人类团队的审核,因此表达这些数学模型的建模语言必须既是人类可理解的,又符合形式化方法。
