摘要:复杂技术系统中的控制设计和功能分配主要由技术驱动,从而提高了自动化程度。技术开发中很少考虑人或用户的观点。相关态度似乎是提高自动化程度将减少人为错误的发生,从而确保更安全的设计和操作。然而,提高自动化水平可能会降低操作员的态势感知能力。船舶动态定位 (DP) 系统的设计也是如此。事故统计数据显示,某些 DP 操作中的碰撞频率高于验收标准,并且技术和人为故障的结合是几乎所有事故的主要原因。本文强调了在 DP 系统的设计和操作中考虑操作员的作用和人的可靠性的重要性。本文介绍了 DP 系统的功能模型,并讨论了当前的控制功能分配及其对操作员的态势感知和性能的影响。本文最后提出了有关控制功能分配和操作风险可视化的建议,以提高操作员的绩效和可靠性。关键词:人为可靠性、自动化、动态定位 (DP)、控制功能分配、态势感知。1.简介 复杂技术的控制设计和功能分配主要由技术驱动(这意味着技术的能力是其发展的核心),从而提高了系统的自动化程度。自动化一词有几种定义。本文采用了 Sheridan 的定义 [1]:“自动化是指环境变量感知(通过人工传感器)、数据处理和决策(通过计算机)以及机械动作(通过电机或可以对环境施加力或向环境传递信息的装置)的机械化和集成化”。本文使用的术语“自动化”表示机器执行以前由人执行的功能 [2]。在先进技术系统的设计阶段,很少采用人或用户的观点 [3]。相关态度似乎是,更多的自动化将减少人为错误的发生,从而确保更安全的设计和操作 [4]。然而,自动化水平的提高可能会付出代价。动态定位 (DP) 系统是一种复杂而先进的技术。国际海事组织 (IMO) 将 DP 船定义为仅依靠推进器就能保持位置和航向并沿着预定航线缓慢行驶的船舶。DP 系统包括实现位置保持所需的所有系统,包括 DP 计算机控制系统 (DPCCS)、推进器系统和电力系统 [5]。DP 船依靠计算机系统解释来自参考系统、风和运动传感器的信号,以保持位置和航向或遵循预设航线。保持位置或遵循预设航线是通过调整船舶推进器的方向和力量来实现的。DP 用于各种操作。在海上石油和天然气行业中,它可用于卸载、钻井、潜水、海底干预、地震和施工作业 [6]。IMO [5] 定义了三个 DP 等级。分类的基础是最坏情况的单一故障模式。
高空平台 (HAP) 是一种重量极轻、高空长航时飞机 (HALE),设计用于在 FL450 和 FL800 之间的高度上保持空中飞行并保持位置数天。携带光学测量设备,科学家可以长时间连续观测地球。与卫星相比,这是一个优势,卫星通常每隔几天才经过同一地点,而且飞行高度要高得多,例如,导致光学分辨率较低。启动和降落的能力允许重新配置和重新定位飞机以执行新的和不同的任务。此外,与卫星相比,飞机的购买和运营成本预计要低得多,包括基础设施(机场与航天港)。图 1 显示了 DLR 目前正在开发的 HAP 配置。我们的想法是制造一种飞行器,它飞行速度非常慢(V EAS = 9 .0 ...11 .0 米/秒),但在推进和空气动力学性能方面非常高效,并且由太阳能供电。这就要求设计能够提供较大的区域来安装太阳能电池板,同时重量要非常轻。在夜间,高度会降低并使用电池,然后在白天飞机重新获得高度时对电池进行充电。目前正在业界开发的类似配置包括空客 Zephyr [ 1 , 2 ](原由 QinetiQ 开发)或 BAE Systems 的 Phasa-35 [ 3 ]。其他有或没有尾翼的类似飞机包括 Solar Impulse [ 4 ] 或 NASA Helios 原型机 [ 5 ]。前两个示例计划用于商业用途,而后者具有更多的科学背景。本文是系列出版物中的第二篇。在第一篇出版物 [ 6 ] 中,作者重点关注:
高空平台 (HAP) 是一种重量极轻、高空长航时飞机 (HALE),设计用于在 FL450 和 FL800 之间的高度上保持空中飞行并保持位置数天。携带光学测量设备,科学家可以长时间连续观测地球。与卫星相比,这是一个优势,卫星通常每隔几天才经过同一地点,而且飞行高度要高得多,例如,导致光学分辨率较低。启动和降落的能力允许重新配置和重新定位飞机以执行新的和不同的任务。此外,与卫星相比,飞机的购买和运营成本预计要低得多,包括基础设施(机场与航天港)。图 1 显示了 DLR 目前正在开发的 HAP 配置。我们的想法是制造一种飞行器,它飞行速度非常慢(V EAS = 9 .0 ...11 .0 米/秒),但在推进和空气动力学性能方面非常高效,并且由太阳能供电。这就要求设计能够提供较大的区域来安装太阳能电池板,同时重量要非常轻。在夜间,高度会降低并使用电池,然后在白天飞机重新获得高度时对电池进行充电。目前正在业界开发的类似配置包括空客 Zephyr [ 1 , 2 ](原由 QinetiQ 开发)或 BAE Systems 的 Phasa-35 [ 3 ]。其他有或没有尾翼的类似飞机包括 Solar Impulse [ 4 ] 或 NASA Helios 原型机 [ 5 ]。前两个示例计划用于商业用途,而后者具有更多的科学背景。本文是系列出版物中的第二篇。在第一篇出版物 [ 6 ] 中,作者重点关注:
西尼罗河病毒(WNV)是美国最常见的蚊子传播疾病,仅在加利福尼亚州就会导致数百例报告。传输周期主要发生在鸟类和蚊子中,使气象条件(例如温度),对传播特征尤其重要。鉴于由于全球气候变化,温度的未来增长几乎是不可避免的,因此确定人类温度与WNV发生率之间的关联,以及对未来病例的预测,对加利福尼亚州的公共卫生机构来说很重要。使用加利福尼亚公共卫生部(CDPH)的监视数据,国家海洋与大气管理局(NOAA)的气象数据以及VectorsUrv的向量和托管数据,我们创建了GEE自动性自动化和零添加的回归回归,以确定温度和其他环境因素在WNV生病和预期中的作用。发现温度升高与2017 - 2022年之间11个高负荷加州县的发病率升高(IRR = 1.06),保持位置,一年中的时间和降雨常数。在我们的研究期间,假设的华氏2度(到2040年)将导致每年超过20个过量病例。使用2017–2021作为训练集,气象/寄主/矢量数据能够密切预测2022年的发病率,尽管这些模型确实高估了病例的峰值数量。零充气的模型紧密地预测了冬季的病例数量较少,但在高传输期间的表现比GEE模型差。这些发现表明,气候变化将会并且可能已经改变了加利福尼亚州WNV的传输动态和发病率,并提供了帮助预测未来发病率的工具。
先进科学技术研究组织,日本横滨 基金会物理学研究中心 (FoPRC),意大利科森扎。 电子邮件:takaaki.mushya@gmail.com 通讯作者详细信息:Takaaki Musha;takaaki.mushya@gmail.com 摘要 已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。本文讨论了通过电重力推动卫星的可能性。通过理论计算,这种推进方法可以产生足够的力来控制卫星的轨道。它只使用太阳能电池板产生的电能,卫星可以永久绕地球运行并在太阳附近的任何轨道上运行。 关键词:空间推进;卫星;电重力;比菲尔德-布朗效应 介绍 所有航天器都需要一种推进方法。已经开发出几种空间推进方法,包括实用的和假设的,每种方法都有其缺点和优点。卫星首次发射到预定轨道需要使用常规液体或固体火箭发动机,并具备足够的推进力以克服地球大气层并达到稳定轨道所需的高速度。行星际航天器可能需要这种强大的常规火箭发动机,但也可以依靠功率较小但持续时间较长、ISP 较高的发动机,如离子推进器或霍尔效应推进器。卫星即使进入稳定轨道,也需要可靠的长时间推进方法才能保持功能。即使卫星在轨道上,它也会受到稀薄大气层的阻力和其他力的影响,这些力会随着时间的推移降低轨道。因此,卫星必须能够对其轨道进行微小修正以保持轨道,这称为轨道站保持 [1]。此外,卫星可能需要能够不时从一个轨道转移到另一个轨道 [2],能够保持相对于地球表面、太阳或其他感兴趣的天文物体的特定姿态 [3],并且由于部件故障或其他原因,甚至可能需要以安全和可控的方式脱离轨道。在大多数情况下,当卫星执行轨道调整的推进系统耗尽或无法再产生推进力时,卫星执行其设计任务的能力就结束了,其使用寿命也结束了。目前,卫星通常只使用较小版本的化学火箭发动机或电阻喷射火箭进行推进。有些卫星确实使用电动动量轮进行姿态控制,但由于运动部件的存在,这些动量轮容易发生故障,并且它们可以执行的校正范围有限。最近,卫星开始使用电力推进,例如离子推进器来保持位置并调整轨道,但这种推进器虽然是电力驱动的,他们的供应仍然有限