Curran, R. M. (主席) (通用电气公司) Baker, C. (雷诺兹金属公司) Berry, W. R. (西屋电气公司) Bodzin, J. J.(底特律爱迪生公司) Bradbury, T.G.(加拿大钢铁公司) Epstein, S. G. (美国铝业协会) Esztergar, E. P. (海湾通用原子公司) Fox, H. S. (田纳西河谷管理局) Ives, K. D. (美国钢铁公司) Kenig, M. J.(德雷塞尔理工学院) Lawton, C. E. (燃烧工程公司) Leven, M. M. (西屋研究实验室)Lemcoe, M. M. (巴特尔纪念研究所) Melilii, A. S. (通用电气公司) Murphy, J. J.(M. W. 凯洛格公司) Nordmark, G. E. (美国铝业公司) Smith, G. V. (咨询工程师) Sutherland, J. G. (铝业实验室有限公司) Timo.D. P.(通用电气公司) Traexler, J. F.(西屋电气公司) Tyler, C. M. Jr.,(奥林马西森化学公司) Ullinger, R. L.(美国电力服务公司) Weldon, R. P.(福斯特惠勒公司) Wundt, B. M.(小组委员会顾问) Zwilsky, K. M.(原子能委员会)
•通过无线电跟踪对航天器的轨道测定有助于测量天体的重力。•确定行星的内部组成(包括月亮)。•非重力力限制了重力恢复。•AI在板上航天器可以用作理想的测试质量,以消除此类干扰。•更好的行星科学(参见bepicolombo)
清洁计时器.................... ... ................. ... ................. ... 3 注意事项.................... ... . . . . 4 动作警报. . . . . . . . . . . . . . . . . . . . . . 4 完成警报. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 保持计时器. . . . . . . . . . . . . . . . . . . . . . . . 5 查看所有有效保持时间. . . . . . . . . . . . . . . . . . . . . . . 5 开始烹饪周期. ................. ...
烧结发生的温度大约高于化合物熔点的一半。由于陶瓷的熔点在所有工程材料中最高,因此烧结温度通常在 1000 至 2000 °C 之间。为了控制最终的微观结构和性能,关键的烧结参数包括加热速度、最高温度、保持时间和气氛。其他可能性包括使用机械压力、电场/电流或电磁波、烧结添加剂等。在工业间歇或连续炉中,缓慢的加热速度、较长的保持时间,以及随后的缓慢冷却速度是标准配置。由于当前的能源危机和全球气候变化,金属和陶瓷零件的烧结等能源密集型工艺不仅增加了生产成本,而且还对其碳足迹和生命周期评估产生负面影响。
序言 根据与加拿大运输部运输发展中心签订的合同以及与联邦航空管理局的合作,APS Aviation Inc. (APS) 开展了一项研究计划,旨在推进飞机地面除冰/防冰技术。APS 测试计划的具体目标如下: • 为所有新合格的除冰/防冰液开发保持时间数据; • 评估拟议航空航天标准 5485 中规定的实验室霜冻耐久性测试参数; • 评估前几个冬季的天气数据,以确定适合评估保持时间限制的一系列条件; • 进一步评估模拟起飞过程中飞机机翼受污染液体的流量; • 比较在自然雪中和实验室雪中的耐久性; • 比较液体耐久性、保持时间和保护时间; • 比较使用国家大气研究中心热板获得的降雪率和使用速率盘获得的降雪率; • 进一步分析降雪率与能见度之间的关系; • 促进 III 型液体的开发; • 测量使用强制空气辅助系统应用的液体的耐久时间; • 进行探索性研究,包括测量所应用的 IV 型液体的温度、测量滞后时间对保持时间的影响、评估液体覆盖的有效性以及评估滑行时间对除冰保持时间的影响;以及 • 为加拿大运输部提供支持服务。该计划在 2002-03 年冬季代表加拿大运输部开展的研究活动记录在十三份报告中。报告标题如下: • TP 14144E 2002-03 年冬季飞机地面除冰/防冰液保持时间开发计划; • TP 14145E 霜冻耐久时间测试的实验室测试参数; • TP 14146E 冬季天气对保持时间表格式的影响(1995-2003 年); • TP 14147E 2002-03 年冬季飞机起飞测试计划:测试以评估清洁或部分消耗的防冰液的空气动力学损失; • TP 14148E 雪地续航时间测试:2002-03 年室内和室外数据比较; • TP 14149E 飞机防冰液在铝表面的粘附性;
由于清洁剂是为扑灭早期火灾而设计的,因此无法阻止非燃烧热失控。排放 30 分钟后,没有药剂悬浮,空间完全容易发生爆炸和火灾。未能使用适当设计的灭火系统,包括未能完全密封外壳,从而导致药剂浓度过早耗尽和保持时间减少,被认为是导致事故严重性的主要因素之一。13
C. T. Sims^(书面讨论)— 您的疲劳蠕变研究是在 650°C (1200°F) 和 815°C (1500°F) 下进行的,持续时间较长。您表示,无论是在测试之前还是之后,都没有对这两个温度变量进行金相检查。根据我的经验,IN 625 是一种(真正)不稳定的材料。在 650 至 725°C (1200 至 1300°F) 左右的温度以上,合金开始析出大量片状相,通常来自晶界。这些片状相主要是 η 相(NIsCb、Mo),但也会出现 Laves 相和 μ 相。这些相会从溶液中去除强化元素,促进裂纹的萌生,并直接帮助裂纹在载荷下扩展,从而大幅降低蠕变和断裂性能。因此,很明显,您在 815°C (1500°F) 下的测试结果(“815°C 下的拉伸保持时间对循环寿命有(显著)影响;压缩保持时间对疲劳寿命也有破坏性影响——在 815°C 的低应变水平下非常明显;- 等等”)直接由大量 eta. Laves 和 mu 的沉淀引起。有私人公司文件和 ASTM 文件警告不要在这些条件下使用 IN 625,因为合金会退化。简而言之,作者未能获得有关 IN 625 的基本知识,并且研究未能对测试材料进行简单的金相分析,导致了大量
显示 7600 遵循 STAR PLN 或根据已知或估计的着陆方向授权。如果是雷达制导,则加入初始 STAR。如果在等待期间可用,则向已确认收到的最后指定级别的 IAF 报告;如果在等待的最高级别不可用,则向 IAF 报告。保持在此高度直到以下时间中较晚的时间: - PDT - 到达保持时间加上 10 分钟,然后下降到保持区到指定的高度以开始初始进近,在此高度离开 IAF 以开始着陆进近程序。
本研究介绍了一种估算奥氏体不锈钢 304、304L、316 和 316L 型裂纹扩展的方法,这些不锈钢通常用作核压力容器的结构材料。这些结构部件通常要经受中子辐照和组合载荷,包括启动和关闭引起的重复机械应力(即疲劳)以及高温下加载期间引起的蠕变。在本研究中,使用基于条带屈服的疲劳裂纹扩展模型估算疲劳裂纹长度。该模型扩展为包括存在保持时间时的蠕变变形的影响,并扩展为包括辐照的影响。与文献中可用的实验数据相比,可以对各种组合载荷条件下选定的材料获得合理的裂纹扩展估计值。
摘要。本文作者针对在爆震过程中可能出现的问题:当事故发生时不发生爆炸,当没有爆炸点或没有安全气囊时,安全气囊静态展开所需要的电源参数,设计了针对安全气囊展开时间、电流大小等参数可调的嵌入式电源系统。实验平台通过触摸式人机界面设定电流值、电压值、脉冲延迟时间、脉冲保持时间,模拟汽车交通事故中安全气囊发出的引爆信号,实现安全气囊静态引爆,并触发闪光灯和高速摄像机记录安全气囊的引爆过程。通过实际安全气囊展开试验,该系统达到了实验目的,为安全气囊的实验和考核提供了智能化、通用化的解决方案。