随着民用和军用领域对地月空间的兴趣日益增加,对地月空间物体的空间域感知 (SDA) 的需求也随之增加。地月空间的太空 SDA 具有挑战性,部分原因是难以准确估计观测卫星的位置,而准确估计是有效执行 SDA 任务的必要条件。使用多颗配备低保真度设备的观测卫星有助于缓解这些问题,因为可以将方差较大的多个数据集聚合在一起,以实现与较少高质量测量系统相同或更高的精度。地月周期轨道用于观测星座,目标航天器位于 L1 Halo 轨道上。所有轨道均使用圆形限制三体问题 (CR3BP) 建模。系统工具包 (STK) 用于计算轨道几何形状和角度 - 仅提取测量值以模拟带有光学传感器的观测航天器。然后利用扩展卡尔曼滤波器处理测量数据以估计目标航天器的位置。分析重点是比较不同数量的观测航天器的有效性。模拟结果发现,使用低保真度星座可以达到高保真度星座所达到的性能。
量子退火器 (QA) 是单指令量子机,只能从能量函数(称为哈密顿量)的基态进行采样。要执行程序,需要将问题转换为嵌入在硬件上的哈密顿量,然后运行单个量子机器指令 (QMI)。即使 QMI 运行了数千次试验,硬件中的噪声和缺陷也会导致 QA 得到次优解决方案。由于 QA 的可编程性有限,用户在所有试验中都执行相同的 QMI。这会导致所有试验在整个执行过程中都受到相似的噪声影响,从而导致系统偏差。我们观察到系统偏差会导致次优解决方案,并且无法通过执行更多试验或使用现有的错误缓解方案来缓解。为了应对这一挑战,我们提出了 EQUAL(E nsemble QU antum A nnea L ing)。EQUAL 通过向程序 QMI 添加受控扰动来生成 QMI 集合。在 QA 上执行时,QMI 集合可使程序避免在所有试验中遇到相同的偏差,从而提高解决方案的质量。我们使用 D-Wave 2000Q 机器进行的评估表明,EQUAL 可将基线与理想值之间的差异缩小平均 14%(最高可达 26%),而无需任何额外试验。EQUAL 可以与现有的错误缓解方案相结合,进一步缩小基线与理想值之间的差异,平均缩小 55%(最高可达 68%)。
本文研究了随机量子电路中的保真度衰减,重点是掉期操作。所考虑的模型交织了具有任意排列的2量门的层。作者分析了通过故障掉期门的组合实现的2 Quibit门和故障排列的效果。为了易于分析,该模型由可解决的模型替代,其中置换量用π→𝑅π𝑅取代,以从HAAR随机分布中取样。
Prime 编辑 (PE) 是一种强大的基因组工程方法,能够将碱基替换、插入和删除引入任何给定的基因组位点。然而,PE 的效率差异很大,不仅取决于目标基因组区域,还取决于编辑细胞的遗传背景。在这里,为了确定哪些细胞因素会影响 PE 效率,我们针对 32 个 DNA 修复因子进行了有针对性的遗传筛选,涵盖了所有已报道的修复途径。我们表明,根据细胞系和编辑类型,错配修复 (MMR) 的消融可使 PE 效率提高 2-17 倍,涵盖多种人类细胞系、编辑类型和基因组位点。关键 MMR 因子 MLH1 和 MSH2 在 PE 位点的积累表明 MMR 直接参与 PE 控制。我们的研究结果为 PE 机制提供了新的见解,并提出了如何优化其效率。
摘要 本文探讨了飞行模拟器的保真度要求,以改进训练并解决与旋翼机飞行中失控 (LOC-I) 相关的问题。为了说明背景,本文介绍了旋翼机事故统计趋势。数据显示,尽管最近采取了安全举措,但 LOC-I 旋翼机事故已被确定为事故率的一个重要且不断增长的因素。20 世纪 90 年代末,固定翼商用飞机界面临着与失控预防和恢复相关的类似情况,并通过协调的国际努力,制定了有针对性的培训计划以降低事故率。本文介绍了从固定翼计划中吸取的经验教训,以强调如何需要改进旋翼机建模和仿真工具,通过更高质量的基于模拟器的培训计划来减少旋翼机事故。本文回顾了相关的飞行模拟器认证标准,重点关注飞行模型保真度和前庭运动提示要求。旋翼机建模和运动提示研究的结果强调了相关的保真度问题,旨在确定进一步活动的领域,以提高用于 LOC-I 预防训练的模拟器标准的保真度。
基因组编辑工具,如锌指核酸酶、转录激活因子样效应核酸酶、CRISPR-Cas 系统和 CRISPR-Cas 衍生物(胞嘧啶和腺苷碱基编辑器),已广泛应用于基因组操作,并显示出它们的治疗潜力。除了基因组编辑技术之外,RNA 碱基编辑技术也得到了开发 1 。由于 RNA 编辑是可逆的、可调控的,并且不会导致基因组的永久性改变,因此它在治疗应用中可能具有一定的优势。对于腺苷的 RNA 编辑,作用于 RNA 的腺苷脱氨酶 (ADAR) 家族的成员,如 ADAR1(异构体 p110 和 p150)和 ADAR2(参考文献 2、3),已被设计用于将腺苷 (A) 精确转化为肌苷 (I) 1 。 ADAR1/2 的催化底物是双链 RNA,ADAR1/2 的脱氨酶结构域负责 A 到 I 的 RNA 编辑 4、5。肌苷被识别为鸟苷 (G),并在随后的细胞翻译过程中与胞苷 (C) 配对 3。为了实现靶向 RNA 编辑,ADAR 蛋白(或其脱氨酶结构域 ADAR DD)已与多种 RNA 靶向模块融合,例如 λ N 肽 6 – 8、SNAP 标签 9 – 13 和 Cas13 蛋白 14。此外,可以利用带有 R/G 基序的工程向导 RNA 与异位表达的 ADAR1 或 ADAR2 蛋白偶联来实现靶向 RNA 编辑 15 – 18。然而,外源编辑酶的异位表达与几个问题有关,包括基因组和/或 RNA 转录物的大量全局脱靶编辑 19 – 23 、免疫原性 24 – 27 、致癌性 28 – 30 和递送障碍 24 。 Stafforst 团队和我们自己报告的两种 RNA 编辑技术 RESTORE 31 和 LEAPER 32 利用内源性 ADAR 对 RNA 进行可编程编辑,而无需引入
具有数百个量子比特的量子计算机即将面世。不幸的是,高设备错误率对使用这些近期的量子系统为实际应用提供支持构成了重大挑战。在现有量子系统上执行程序会产生正确和错误的结果,但输出分布通常太嘈杂而无法区分它们。在本文中,我们表明错误结果不是任意的,而是在汉明空间中表示时表现出明确定义的结构。我们在 IBM 和 Google 量子计算机上的实验表明,最常见的错误结果在汉明空间中更有可能接近正确结果。我们利用这种行为来提高推断正确结果的能力。我们提出了汉明重构 (HAMMER),这是一种后处理技术,它利用对汉明行为的观察来重建嘈杂的输出分布,从而使得到的分布具有更高的保真度。我们使用来自 Google 和 IBM 量子计算机的实验数据(这些计算机拥有 500 多个独特的量子电路)评估 HAMMER,并将解决方案质量平均提高了 1.37 倍。在 Google 公开的 QAOA 数据集上,我们表明 HAMMER 可以锐化成本函数景观上的梯度。
目标:交付是评估行为干预措施忠诚度的最常见方法之一。但是,缺乏有关干预协议如何反映其提出的理论原理(设计保真)的研究报告。本研究提出了一种用于评估设计保真度的系统方法,并将其应用于针对体育锻炼和抑郁症的基于情感的干预措施。方法:情绪干预包括13个基于网络的模块,该模块是根据基础干预图设计的。具有行为变化专业知识的独立评估者编码了情感内容中的存在或不存在行为变化技术(BCT)。编码结果与干预设计师的先验可靠性规范进行了比较。结果:在讨论之后,独立评估者和干预设计师在与行为激活有关的BCT(AC1 0.91)的存在上具有很高的一致性,并具有“行为的证明”和“监测情绪后果”,具有最低的一致性(AC1 0.4)。与具有最低一致性(AC1 0.4)的“行为演示”和“对情绪后果的监测”(AC1 0.4)的“行为演示”和“监测情绪后果”的存在也有很高的一致性(AC1 0.88)。然后对情绪描述进行了修改,以使互判协议保持一致。结论:本研究提出了一种评估设计保真度的新方法。鼓励行为(和其他多组分)干预措施的开发人员开发和完善这种方法,并评估未来干预措施中的设计保真度,以确保BCT按预期运行。
大型语言模型(LLM)可用于估计人类的态度和行为,包括公众舆论的衡量标准,这一概念称为算法忠诚度。本研究评估了LLMS在估计有关全球变暖的公众舆论时的算法忠诚度和偏见。llms是根据人口统计和/或心理协变量来进行调查反应的条件。的调查结果表明,LLM可以有效地再现总统投票行为,而不是全球变暖意见,除非包括相关的协变量。在以人口统计和协变量为条件的情况下,GPT-4表现出改善的准确性,在预测对全球变暖的信念和态度方面,范围从53%到91%。此外,我们发现了一种算法偏见,低估了黑人美国人的全球变暖意见。在强调LLMS有助于社会科学研究的潜力时,这些结果强调了调节,模型选择,调查问题格式和偏见评估的重要性。
加扰是存储在局部自由度中的信息扩散到量子系统的多体自由度的过程,从而无法被局部探测器访问,并且显然会丢失。加扰和纠缠可以调和看似不相关的行为,包括孤立量子系统的热化和黑洞中的信息丢失。在这里,我们证明保真非时序相关器 (FOTOC) 可以阐明加扰、纠缠、遍历性和量子混沌(蝴蝶效应)之间的联系。我们为典型的 Dicke 模型计算了 FOTOC,并表明它们可以测量子系统 Rényi 熵并提供有关量子热化的信息。此外,我们说明了为什么 FOTOC 可以在没有有限尺寸效应的混沌系统中实现量子和经典 Lyapunov 指数之间的简单关系。我们的研究结果为实验性使用 FOTOC 探索加扰、量子信息处理的界限以及可控量子系统中黑洞类似物的研究开辟了道路。