在发生内部短路的情况下,使用Dual-Fuse和Auxilariary Crowbar开关断开故障的腿,然后是备用腿(图。1,红色虚线框)自发连接,从而可以连续操作。为了提高系统的可靠性和紧凑性,可以在功率半导体[5],[6]组件(IGBTS,MOSFET等)上单层整合使用的熔断器,如图1(Fuse-On-transistor,蓝色虚线框)。在功率上的保险丝的集成分两个步骤进行了半导体组件。首先,熔断器,称为“独立保险丝”(图1,绿色虚线盒),由硅基板上的薄铜层(18 µm)制成,以研究组件的热和电气行为。
全球电气变电站将在未来十年内进行大规模升级,以使网格在未来的可再生能源系统中可管理。能量过渡正在推动与可再生能源和新型能源消耗(例如EV和热泵)相互联系的微电网的创建。这就是为什么智能产品和数据对于满足向智能电网行业过渡的需求至关重要的原因。凭借我们的预付款,默森(Mersen)通过量身定制的解决方案为分配系统运营商提供支持,以增强低压网络维护,安全性和能源节省,自动化,更快的功率修复,负载和来源管理的灵活性。
请注意,您的产品可能需要满足锂离子电池的各种安全标准,包括需要冗余的标准 - 也就是说,单一的故障点不得阻止过电流或过度充电保护功能正确运行。例如,锂离子电池的IEC标准要求在禁用电池组中使用一种保护设备进行外部短路测试。此外,可充电电动工具的IEC标准要求对某些异常条件响应锂离子充电系统永久残疾。在这两种情况下,添加二级保护设备都可以通过SchottSefuse®D6S电池保险丝等设备满足这些需求来满足这些要求。Sefuse®D6S电池保险丝完全符合相关的UL和TüV标准。
摘要:在本文中,提出了一种详细的三维,瞬态,有限的元素方法链接链接nh000 gg 100 a。在名义(100 a)和自定义条件(110和120 a)下进行保险丝运行过程中的热性能是进行分析的主要重点。工作涉及保险丝链接(陶瓷体)的外部元素和内部(当前电路)的元素。已经描述了电流的分布及其对操作模式期间保险丝构造部分温度的影响。使用数值模型测量温度分布,功率损耗和能量耗散。为了验证和验证模型,两个独立的科学家团队执行了实验研究,在此期间,在涉及额定电流的设备的不同部分上测量了温度。最后,将两组结果组合在一起,并将其与从仿真测试中获得的结果进行了比较。强调了经验测试结果与模拟工作之间可能的显着相关性。
电源 TVS 产品 SinglFuse™ 薄膜芯片保险丝 Telefuse™ 电信保护器 晶闸管浪涌保护器 TBU® 高速保护器 (HSP) TCS™ 高速保护器 (HSP) TVS 二极管 TVS 二极管阵列 CO 和室外设备产品 连接器 二极管 编码器 LED 分流保护器 磁性产品 微电子模块 位置传感器 电位器 电阻产品 浪涌保护器 (SPD) 开关 开关火花隙晶体管和晶闸管
保险丝选择似乎很简单,你只需选择一个额定电流略高于最坏情况系统工作电流的保险丝即可。不幸的是,事情没那么简单。需要考虑工作电流和应用温度的降额问题。开机和其他系统操作(如处理器速度变化或电机启动)会导致电流激增或尖峰,在选择保险丝时也需要考虑这些因素。因此,为你的应用选择合适的保险丝并不像了解系统所消耗的标称电流那么简单。