摘要 — 本文提出了一种基于动态偏置长短期记忆 (DB-LSTM) 网络的心电图 (ECG) 信号分类模型。与传统 LSTM 网络相比,DB-LSTM 引入了一组参数 C,用于保存单元格的先前时间步长单元门状态。因此,可以保留更多特征信息,并且分类任务所需的网络规模更小。使用 MIT-BIH ECG 数据集进行的全面模拟表明,该模型可以在更短的时间窗口、更快的训练收敛下执行 ECG 特征分类,同时以更低的权重分辨率实现相当的训练和分类精度。与其他最先进的 ECG 分析算法相比,该模型仅需要 4 层,当权重从 FP32 截断为 INT4 时,准确率达到 96.74%,准确率仅下降 2.4%。在 Xilinx Artix-7 FPGA 上实现,所提出的设计估计仅消耗 40μW 动态功率,这对于资源受限的边缘设备来说是一个有希望的候选方案。
摘要:本文提出了一种新型的监督学习方法——统计自适应傅里叶分解(SAFD)。SAFD 使用正交有理系统或 Takenaka-Malmquist(TM)系统为训练集建立学习模型,在此基础上可以对未知数据进行预测。该方法侧重于信号或时间序列的分类。AFD 是一种新开发的信号分析方法,它可以自适应地将不同的信号分解为不同的 TM 系统,引入了傅里叶类型但非线性和非负的时频表示。SAFD 将学习过程与 AFD 的适应性特征充分结合起来,其中少量的学习原子足以捕获信号的结构和特征以进行分类。SAFD 有三个优点。首先,在学习过程中会自动检测和提取特征。其次,所有参数都由算法自动选择。最后,将学习到的特征以数学形式表示出来,并可以根据感应瞬时频率进一步研究特征。通过心电图 (ECG) 信号分类验证了所提方法的有效性。实验表明,该方法比其他基于特征的学习方法效果更好。
我们展示并分享了一个大型数据库,其中包含来自 87 名人类参与者的脑电信号,这些信号是在一天的脑机接口 (BCI) 实验中收集的,分为 3 个数据集 (A、B 和 C),所有数据集均使用相同的协议记录:右手和左手运动想象 (MI)。每个会话包含 240 次试验(每个类别 120 次),代表超过 20,800 次试验,或大约 70 小时的记录时间。它包括相关 BCI 用户的表现、有关人口统计、个性特征以及一些认知特征的详细信息以及实验说明和代码(在开源平台 OpenViBE 中执行)。这样的数据库可用于各种研究,包括但不限于:(1) 研究 BCI 用户的个人资料与其 BCI 表现之间的关系,(2) 研究 EEG 信号属性如何因不同用户的个人资料和 MI 任务而变化,(3) 使用大量参与者设计跨用户 BCI 机器学习算法或 (4) 将用户的个人资料信息纳入 EEG 信号分类算法的设计中。
在人工智能社区中,在使用深度学习技术编码序列数据中取得了显着的进步。从未有过,如何有效地从通道维度挖掘有用的信息仍然是一个主要的挑战,因为这些特征具有子序列结构。线性子空间是格拉曼尼亚歧管的基本元素,已被证明是统计代表中的效率流形特征描述符。此外,欧几里得的自我关注机制在捕获数据的长期关系方面已显示出巨大的成功。受这些事实的启发,我们将自我注意力的机械主义扩展到了格拉斯曼尼亚的歧管。我们的框架可以有效地表征格拉曼尼亚歧管中编码的顺序数据的空间波动。在三个基准测试数据集(无人机识别数据集和两个EEG信号分类数据集)上进行了广泛的实验结果,证明了我们方法的优越性,而不是最先进的。可以在https://github.com/chenhu-ml/gdlnet上找到这项工作的代码和支持材料。
从脑电图 (EEG) 信号中识别情绪需要准确高效的信号处理和特征提取。深度学习技术已经能够自动提取原始 EEG 信号特征,从而更准确地对情绪进行分类。尽管取得了这些进展,但尚未研究从 EEG 信号(尤其是在回忆特定记忆或想象情绪情境时记录的 EEG 信号)中进行情绪分类。此外,使用深度神经网络进行高密度 EEG 信号分类面临着计算复杂度高、通道冗余和准确度低等挑战。为了解决这些问题,我们评估了使用简单的通道选择方法对基于深度学习的自诱情绪进行分类的效果。实验表明,基于信号统计数据选择关键通道可以在不降低分类准确度的情况下将计算复杂度降低 89%。准确率最高的通道选择方法是基于峰度的方法,其对效价和唤醒量表的准确率分别达到 79.03% 和 79.36%。实验结果表明,尽管所提出的框架使用的通道较少,但其性能优于传统方法。我们提出的方法有利于在实际应用中有效利用 EEG 信号。
摘要:最近,使用脑电图 (EEG) 进行音频信号处理中的模式识别引起了广泛关注。眼部情况(睁眼或闭眼)的变化反映在 EEG 数据的不同模式中,这些数据是从一系列情况和动作中收集的。因此,从这些信号中提取其他信息的准确性在很大程度上取决于在采集 EEG 信号期间对眼部情况的预测。在本文中,我们使用深度学习矢量量化 (DLVQ) 和前馈人工神经网络 (F-FANN) 技术来识别眼部情况。由于 DLVQ 能够学习代码约束的码本,因此在分类问题上优于传统 VQ。在使用 k 均值 VQ 方法初始化后,DLVQ 在 EEG 音频信息检索任务上测试时表现出非常出色的性能,而 F-FANN 将眼部状态的 EEG 音频信号分类为睁眼或闭眼。与 F-FANN 相比,DLVQ 模型具有更高的分类准确度、更高的 F 分数、精确度和召回率,以及更出色的分类能力。
飞机蒙皮是飞机的重要组成部分,其完整性影响着飞机的飞行性能和安全性能。以超声无损检测为核心的损伤检测技术在飞机蒙皮损伤检测中发挥了重要作用。由于飞机蒙皮检测难度大,单纯依靠超声A扫设备检测效率很低,引入人工智能可以有效提高检测效率。本文建立了一维卷积神经网络与单发多框检测器网络,在SSD网络基础上利用空洞卷积提高超声探头的实时跟踪,同时引入1DCNN对超声A扫信号进行分类,最后将二者的检测结果结合起来实现对飞机蒙皮内部状况的反映。经测试,该算法可以识别蒙皮模拟试件,其识别准确率为96.5%,AP为90.9%,kappa值为0.996。将改进的SSD网络与SSD、YOLOv3、Faster R-CNN等网络进行对比,结果表明本文采用的改进网络更加优秀、有效;同时研究了四类优化算法、五种学习率的检测效果,最终得出对应的信号分类模型采用Adam,学习率为0.0001时效果最好。
在临床诊断中高度要求从脑部计算机界面(BCI)系统进行语音图像脑电图(EEG)信号的准确和自动分类。设计自动分类系统的关键因素是从原始输入中提取基本特征;尽管许多方法在该领域取得了巨大的成功,但它们可能无法处理来自不同接收领域的多尺度表示形式,因此阻碍了该模型获得更高的性能。为了应对这一挑战,在本文中,我们提出了一个新型的动态多尺度网络,以实现EEG信号分类。整个分类网络基于Resnet,输入信号首先通过短时傅立叶变换(STFT)编码特征;然后,为了进一步提高多尺度的特征提取能力,我们结合了动态多尺度(DMS)层,该层使网络可以从更精细的水平上学习来自不同接收场的多尺度特征。为了验证我们设计的网络的有效性,我们在BCI竞争II的公共数据集III上进行了广泛的实验,实验结果表明,我们提出的动态多尺度网络可以在此任务中实现有希望的分类性能。
心律不齐,一种异常心律,是心脏病的最常见类型之一。心律不齐的自动检测和分类对于减少因心脏疾病而导致的死亡可能很重要。这项工作提出了使用单通道心电图(ECG)信号的多级心律失常检测算法。在这项工作中,使用心率变异性(HRV)以及形态学特征和小波系数特征可用于检测9种心律失常。统计,熵和基于能量的特征被提取并应用于基于机器学习的随机森林分类器。两项工作中使用的数据均取自4个广泛的数据库(CPSC和CPSC Extra,PTB-XL,G12EC和Chapman-Shaoxing和ningbo数据库),可用于Phancionet。具有HRV和时域形态特征,平均准确度为85.11%,敏感性为85.11%,精度为85.07%,F1得分为85.00%,而HRV和小波系数特征则获得了90.91%的精度,90.91%fivitivity,90.91%fivitivity,90.90%的速度和90%的精确度,90.96%和90%。对仿真结果的详细分析确认,所提出的方案有效地检测了单渠道心电图记录的心律不齐类别。在工作的最后一部分中,使用Raspberry Pi在硬件上实现了建议的分类方案,以实时ECG信号分类。
飞机蒙皮是飞机的重要部件,其完整性影响着飞机的飞行性能和安全性能。以超声无损检测为核心的损伤检测技术在飞机蒙皮损伤检测中发挥了重要作用。由于飞机蒙皮检测难度大,单纯依靠超声A扫设备检测效率很低。引入人工智能可以有效提高检测效率。本文建立了一维卷积神经网络和单发多框检测器网络,在SSD网络的基础上,利用空洞卷积提高超声探头的实时跟踪。同时引入1DCNN对超声A扫信号进行分类。最后将二者的检测结果结合起来,实现对飞机蒙皮内部状况的反映。经测试,该算法能够对皮肤模拟标本进行识别,其识别准确率为96.5%,AP为90.9%,kappa值为0.996。将改进的SSD网络与SSD、YOLOv3、Faster R-CNN等网络进行比较,结果表明本文采用的改进网络更加优秀、有效。同时研究了4类优化算法、5种学习率的检测效果,最终对应的信号分类模型采用Adam,学习率为0.0001时效果最好。