(由印度政府电子和信息技术部 (MeitY) 赞助)序言:“电子和信息通信技术学院”在印度政府电子和信息技术部 (MeitY) 的财政援助下,在瓦朗加尔国家理工学院 (NIT Warangal) 成立。该学院的管辖范围包括特伦甘纳邦、安得拉邦、卡纳塔克邦、果阿邦、本地治里和安达曼和尼科巴群岛。该学院的作用是提供标准化课程和新兴电子、信息通信技术领域的教师发展计划、行业培训和咨询服务、行业课程开发、在职专业人员的 CEP、技术孵化和创业活动的建议和支持。关于 FDP:该 FDP 旨在提供强大的理论背景以及计算机视觉和医学成像应用领域的实践经验,以及如何借助基于计算机视觉和医学图像分析的算法有效地完成图像的可视化和分析。在“数字印度”计划不断发展和新兴的时代,计算机视觉在机器视觉和医学成像领域变得至关重要,因为图像的多种应用决定并有助于整个地区和国家的社会经济地位。 CV 和医学成像专家的杰出资源人员将提供基于计算机视觉和医学成像的方法。 该 FDP 旨在传授知识和培训有关 AI 工程方面的基础知识以及使用 AI 的最新计算机视觉医学图像分析应用的见解。FDP 将对在计算机视觉和医学图像分析应用的 AI/ML 领域工作的教师和研究人员有所帮助。 主要课程内容: 生物医学和医学图像分析应用简介。 机器学习基础,数据预处理和数据可视化。 监督和无监督学习方法、SVM 分类、神经网络和应用。 深度学习方法简介,以及基于 DL 的其他架构及其应用。 用于生物医学信号和医学成像实现的 CNN 架构。 生物医学信号处理技术、生物医学信号分类、基于脑机接口 (BCI) 的系统、现代 ECG/EEG 信号处理。 使用 MATLAB 分析 ECG、EEG 和 PPG 信号 医学图像数据处理和分析。 用于生物医学成像的 AI/ML、基于 CT 扫描/MRI 的图像分析、眼底和医学图像分类。 Tensor Flow/Keras/PyTorch/Jupyter 和 Colab 的基础知识。 使用 python/MATLAB 进行数据预处理和数据可视化。 使用 Python/MATLAB 进行动手实践。 在 Jetson Nano、TX2 等硬件平台上实现 CV 和 AI 算法。 开展该课程的教师:该项目将由瓦朗加尔国立理工学院的教职人员主持;来自印度理工学院/印度理工学院/印度理工学院相关领域的学者将受邀为该项目授课。来自各行各业的演讲者也有望在课程中发表演讲。
表达个人情绪状态的能力是社会行为的基础(1)。害怕时寻求帮助,悲伤时安慰,高兴时分享喜悦,这些都是社会动物所决定的心理需求(2)。尽管这些天生需求非常重要,但对于无法口头交流的人,很少有神经科学研究与内在动机状态相关的神经信号。例如,在脑机接口 (BCI) 研究中,电位的记录和分类可用于推断闭锁综合症(LIS,3)患者的心理内容。有意识且能产生运动指令或准备电位(4、5)或能通过产生 P300 成分做出自愿决定(6)的患者,可以通过控制光标、机器人、假肢、拼写系统(7)或物体进行交流。然而,处于植物人状态(又称无反应觉醒综合征 (UWS))(8)或微意识状态(9)的患者与这些系统隔绝(10)。神经科学家正在研究从他们的大脑活动中检测他们的动机或情绪状态的方法(11)。此类研究包括通过观察大脑活动来推断内在心理内容的研究。Owen 等人(12)首次利用功能性磁共振成像 (fMRI) 评估意识障碍患者理解和遵从指令的能力。他们对一名被诊断为 UWS 的患者进行了研究,要求患者在 MRI 扫描仪中想象打网球、在家里走动以及在 30 秒内不加思索地休息。研究设计确保患者的反应不仅仅是被动处理口头指令的结果,而且当指示不要执行任务时,患者的反应会消失。通过激活特定大脑区域(如网球想象中的辅助运动区和导航想象中的海马旁回),可以测量患者遵循特定命令的能力,类似于在健康个体中观察到的情况。在最近的 ERP 研究中,Proverbio 等人(13)研究了想象过程的心理生理标记。向参与者展示代表不同语义类别的视觉和听觉刺激,然后要求他们激活与该类别相对应的心理图像。作者能够在没有感觉刺激的情况下识别出不同想象刺激类别(如婴儿、人脸、动物、音乐、语音、情感发声和感觉模态(视觉与听觉))的独特电生理标记。然后,这些 ERP 信号通过机器学习算法(MIRACLE 的分类,14)进行分类,超过了有效沟通的 70% 阈值,在 k 倍交叉验证和保留验证中的准确率分别为 96.37% 和 83.11%。情感计算是人工智能处理情感的一个分支。它包括自动情感识别,由于可用于记录脑信号的廉价设备的出现,该技术目前正在不断发展(15-17)。两项研究在使用被认为可诱发特定情感状态的图像、音频或剪辑诱发情绪期间测量了 alpha 和 beta 脑电图频率,并进行了信号分类。特别是 Choppin(18)
1 机器人工程系,2 生物医学工程系,3 心理学系,4 印度泰米尔纳德邦哥印拜陀卡伦亚理工学院,5 加拿大卡尔加里大学。doi:10.15199/48.2024.09.27 使用提升小波变换进行基于熵的特征提取以对 EEG 信号进行分类摘要。在脑机接口 (BCI) 领域,一个关键的障碍在于有效地对运动想象 (MI) 信号进行分类。已经开发了许多基于脑电图 (EEG) 信号的 MI 分类技术。所提出的系统通过提升小波变换 (LWT) 将 EEG 信号转换为各种表示。长短期记忆 (LSTM) 用于对每行中提取的特征向量进行分类。在 PhysioNet 数据库上评估了该方法的性能,特别是用于区分右手和左手想象移动。该策略使得 LWT 的 72 个小波族中的 19 个的准确率达到 100%。这种组合被证明是基于 BCI 的脑电图分析的高效工具,展示了其作为该领域资源丰富的解决方案的潜力。压力。 W obszarze interfejsu mózg-komputer (BCI) kluczową przeszkodą jest skuteczna klasyfikacja sygnałów obrazowania motorycznego (MI). Opracowano liczne techniki klasyfikacji MI na podstawie sygnału elektroencefalogramu (EEG)。 Proponowany 系统支持脑电图 (EEG) 和提升小波变换 (LWT) 的变换。 Pamięć długoterminowa 长短期记忆 (LSTM) 是一个简单的学习方法,可以帮助您快速记忆。 Wydajność tej 方法是在 PhysioNet 和 bazie danych PhysioNet 中开玩笑的大洋洲,并在 celu rozróżnienia ruchu obrazowania prawej 和 lewej ręki 中使用。策略 ta zapewnia 100% dokładność w 19 z 72 rodzin falek LWT。该组合包括脑电图分析和 BCI 分析,可提供潜在的潜力。 ( Ekstrakcja cech oparta na entropii do klasyfikacji sygnału EEG przy użyciu transacji falkowej Lifting Wavelet ) 关键词:脑机接口、EEG、提升小波变换、LSTM。功能:计算机交互、脑电图、提升小波变换、LSTM。简介 运动想象 (MI) 代表了实现脑机接口 (BCI) 的一种方法。通常,它使用脑电图 (EEG) 来捕捉大脑活动,这是一种非侵入式且易于应用的方法。建议利用支持向量机 (SVM) 来生成非线性决策边界。此外,还定义了特定的核函数来处理数据集缺乏线性可分性的情况 [1]。研究人员在各种应用中对基于运动想象的脑机接口 EEG 信号分类进行了大量研究 [2-7]。在 BCI 的背景下,公共空间模式 (CSP) 是经常使用的特征之一。Selim 等人 [8] 提出了一种结合吸引子元基因算法和 Bat 优化算法的混合方法。这种混合方法用于选择 CSP 的最优特征并同时增强 SVM 的参数。其他研究则探索了使用 CSP 滤波器来推导新的时间序列。作者 [9] 采用了带通滤波器 (BPF) 和独立成分分析 (ICA) 等预处理技术来消除噪音。在区分左拳和右拳动作时,显式和隐式 MI 方法的准确率分别达到了 81±8% 和 83±3%。此外,各种研究还提出了结合不同方法以提高整体性能。在 [10] 中,设计了一种用于二元类 MI 分类的融合程序。它采用互相关技术提取特征,并利用最小二乘 SVM (LS-SVM) 进行分类。通过 10CV 方法进行性能评估,并将结果与八种替代方法进行比较,结果显示显著提高了 7.4%。提取特征和执行分类的另一种重要方法是使用卷积神经网络 (CNN) [11]。通过将 LSTM 网络与空间 CNN 集成,可以增强 BCI 的性能。随后,获得一个特征向量获得了一个特征向量获得了一个特征向量