即使使用现代计算机,以足够高的空间和时间分辨率对等离子体中的射频波进行数值建模仍然具有挑战性。不过,未来可以使用量子计算机加快此类模拟速度。在这里,我们提出了如何对冷等离子体波进行此类建模,特别是在非均匀一维等离子体中传播的 X 波。波系统以具有厄米汉密尔顿量的矢量薛定谔方程的形式表示。块编码用于通过可在量子计算机上实现的幺正运算来表示汉密尔顿量。为了进行建模,我们应用了所谓的量子信号处理算法并构建了相应的电路。在经典计算机上模拟了使用该电路的量子模拟,结果与传统的经典计算一致。我们还讨论了我们的量子电路如何随分辨率扩展。
连续变量量子密钥分布(CVQKD)通过使用标准电信组件而远程分享密钥的优势,从而促进了成本效率和高性能的大都市应用。另一方面,高速介绍的规格扩展已将CVQKD从单模推向连续模式区域,从而导致采用了现代数字信号处理(DSP)技术,以从连续模式量子状态中恢复正交信息。但是,涉及多点处理的DSP的安全证明是一个缺失的步骤。在这里,我们提出了一种通过时间模型理论通过线性DSP分析连续模式态处理的广义方法。时间模式的构建在将安全性证明减少为单模式方案中起着关键作用。所提出的实用性安全分析方法为构建经典兼容数字CVQKD的方式铺平了道路。
癫痫是一种神经系统疾病,其特征是因中枢神经系统内化学突触偶联的自发变化而导致反复发作。为了提高癫痫患者的认知水平,已经进行了大量研究。脑电图 ( EEG ) 作为一种非侵入性技术,能够呈现由于神经活动而引起的头部表面电位,被广泛应用于癫痫研究。信号已通过脑信号处理技术进行分析,该技术主要分为特征提取、特征降维和分类。由于无法进入体内颅内和采样期间癫痫发作次数少等局限性,人们开始研究信号和神经活动模型。本文回顾了癫痫的基本原理,包括使用脑信号处理和神经元建模进行三个主要分支:检测、预测和源定位。由于缺乏结束癫痫发作的长期癫痫脑电图记录,对癫痫预测的研究很少。随后,本篇评论论文建议在癫痫检测的子分支中考虑脑信号处理技术;状态、类型、标记和表面定位,同时它在通过神经元建模针对源定位方面发挥着重要作用。
复旦微电是一家从事超大规模集成电路的设计、开发、测试,并为客户提供系统解决方案的专业公司。公司目前建立了健全安全与识别芯片、非扩散芯片、智能电表芯片、FPGA芯片和集成电路测试服务等产品线,产品广泛涉及金融、社会保障、防伪溯源、网络通讯、家电设备、汽车电子、工业控制、信号处理、数据中心、人工智能等领域。
摘要 心率变异性 (HRV) 测量连续心跳之间时间的变化,是身心健康的主要指标。最近的研究表明,光电容积描记法 (PPG) 传感器可用于推断 HRV。然而,许多先前的研究具有较高的错误率,因为它们仅采用了信号处理或机器学习 (ML),或者因为它们间接推断 HRV,或者因为缺乏大型训练数据集。许多先前的研究可能还需要大型 ML 模型。低准确度和大模型尺寸限制了它们在小型嵌入式设备和未来医疗保健领域的潜在应用。为了解决上述问题,我们首先收集了一个大型 PPG 信号和 HRV 基本事实数据集。利用该数据集,我们开发了结合信号处理和 ML 来直接推断 HRV 的 HRV 模型。评估结果表明,我们的方法的误差在 3.5% 到 25.7% 之间,并且优于仅使用信号处理和仅使用 ML 的方法。我们还探索了不同的 ML 模型,结果表明决策树和多层感知器的平均错误率分别为 13.0% 和 9.1%,模型最多为数百 KB,推理时间少于 1 毫秒。因此,它们更适合小型嵌入式设备,并有可能在未来实现基于 PPG 的 HRV 监测在医疗保健领域的应用。
2.6连贯性,多元自回归(MVAR)建模和定向转移功能(DTF)67 2.7混乱和动态分析71 2.7.1熵71 2.7.2 Kolmogorov熵71 2.7.7.3.7.3 Series 75 2.7.6 Approximate Entropy 11 2.7.7 Using the Prediction Order 78 2.8 Filtering and Denoising 79 2.9 Principal Component Analysis 83 2.9.1 Singular-Value Decomposition 84 2.10 Independent Component Analysis 86 2.10.1 Instantaneous BSS 90 2.10.2 Convolutive BSS 95 2.10.3 Sparse Component Analysis 98 2.10.4 Nonlinear BSS 99 2.10.5 Constrained BSS 100 2.11受约束BSS的应用:示例102 2.12信号参数估计104 2.13分类算法105 2.13.1支持向量机106 2.13.2 K-Means算法114 2.14匹配匹配追踪117 2.15摘要和结论118参考119 119 119
1使用标准5G NR命理学,∆ f = 30 kHz [18,sec。4.2],此假设导致t cp = 0。07 / ∆ f = 2。33 µ s。这转化为单静感感应的最大距离为350 m,而在Bistatic感应中,最大距离为700 m。此类参数足以解决车辆ISAC设置中的各种实际情况。
摘要 — 目的:本文提出了一种基于图信号处理 (GSP) 的方法,通过获取任务特定的判别特征来解码两类运动想象脑电图数据。方法:首先,使用图学习 (GL) 方法从脑电图信号中学习特定于受试者的图。其次,通过对每个受试者图的归一化拉普拉斯矩阵进行对角化,获得正交基,使用该基计算脑电图信号的图傅里叶变换 (GFT)。第三,将 GFT 系数映射到判别子空间,以使用由 Fukunaga-Koontz 变换 (FKT) 获得的投影矩阵区分两类数据。最后,对 SVM 分类器进行训练和测试,以根据所得特征的方差来区分运动想象类别。结果:在 BCI 竞赛 III 的数据集 IVa 上评估所提出的方法,并将其性能与 i) 使用由皮尔逊相关系数构建的图上提取的特征和 ii) 三种最先进的替代方法进行比较。结论:实验结果表明,所提出的方法优于其他方法,反映了整合 GL、GSP 和 FKT 元素的额外优势。意义:所提出的方法和结果强调了整合 EEG 信号的空间和时间特征在提取能够更有力地区分运动想象类别的特征方面的重要性。
摘要 生物信号由多个收集时间序列信息的传感器组成。由于时间序列包含时间依赖性,现有的机器学习算法很难处理它们。超维计算(HDC)作为一种受大脑启发的轻量级时间序列分类范例被引入。然而,现有的 HDC 算法存在以下缺点:(1)线性超维表示导致分类准确率低,(2)由于操作昂贵且不利于硬件而缺乏实时学习支持,以及(3)无法从部分标记数据建立强大的模型。在本文中,我们提出了 TempHD,一种用于高效和准确生物信号分类的新型超维计算方法。我们首先开发一种新型非线性超维编码,将数据点映射到高维空间。与使用昂贵数学进行编码的现有 HDC 解决方案不同,TempHD 在将数据映射到高维空间之前保留了原始空间中数据的时空信息。为了获得最具信息量的表示,我们的编码方法考虑了空间传感器和时间采样数据之间的非线性相互作用。我们的评估表明,TempHD 提供了更高的分类准确度、显著更高的计算效率,更重要的是,它能够从部分标记的数据中学习。我们评估了 TempHD 对用于脑机接口的嘈杂 EEG 数据的有效性。我们的结果表明,与最先进的 HDC 算法相比,TempHD 的分类准确度平均提高了 2.3%,训练和测试时间分别提高了 7.7 倍和 21.8 倍。
摘要 —本文提出了一种神经形态音频处理的新方法,将脉冲神经网络 (SNN)、Transformers 和高性能计算 (HPC) 的优势整合到 HPCNeuroNet 架构中。利用英特尔 N-DNS 数据集,我们展示了该系统处理多种语言和噪声背景下的不同人类声音录音的能力。我们方法的核心在于将 SNN 的时间动态与 Transformers 的注意机制相融合,使模型能够捕捉复杂的音频模式和关系。我们的架构 HPC-NeuroNet 采用短时傅里叶变换 (STFT) 进行时频表示,采用 Transformer 嵌入进行密集向量生成,采用 SNN 编码/解码机制进行脉冲序列转换。通过利用 NVIDIA 的 GeForce RTX 3060 GPU 和英特尔的 Core i9 12900H CPU 的计算能力,系统的性能得到进一步增强。此外,我们在 Xilinx VU37P HBM FPGA 平台上引入了硬件实现,针对能源效率和实时处理进行了优化。所提出的加速器在 100 MHz 下实现了 71.11 千兆操作每秒 (GOP/s) 的吞吐量,片上功耗为 3.55 W。与现成设备和最新最先进实现的比较结果表明,所提出的加速器在能源效率和设计灵活性方面具有明显优势。通过设计空间探索,我们提供了优化音频任务核心容量的见解。我们的发现强调了集成 SNN、Transformers 和 HPC 进行神经形态音频处理的变革潜力,为未来的研究和应用树立了新的标杆。