请全部阅读手册。提供必要的指导和指导,以帮助确保该设备的成功操作。观察以下内容:电源,转换器和高频电缆中存在高压。这些设备中的任何一个都没有可提供用户的零件。不要尝试删除电源盖或转换器盒。在打开电源时,请勿触摸设备上的任何打开的电缆连接。请勿使用与高压电缆断开连接的转换器的电源。电缆中存在高压,可能会构成冲击危险。在设备运行时,请勿尝试断开转换器高电压电缆。必须用3台插头正确接地电源。测试电源插座,以在插入单元之前进行适当的接地。将超声电源安装在没有过多灰尘,污垢,爆炸性或腐蚀性烟雾的区域中,并保护温度和湿度的极端。(有关规格,请参见第5页)不要将电源放置在通风罩中。
量子信息处理为计算提供了更通用的概念,有望比传统计算机更高效。通过将信息编码在纠缠量子态中,某些算法(例如整数分解)有望实现比最知名的传统变体指数级加速。捕获离子是量子信息处理这一高度活跃领域的领先技术之一。它们允许原理验证演示,但仍然仅限于对数十个量子比特的操作。将这些系统扩展到其计算能力超过传统计算机能力的规模仍然是一项非常具有挑战性的任务。在本论文的范围内,对低温离子捕获装置进行了修改和表征,目的是展示可扩展量子计算的构建模块。本论文介绍了三个相互关联的项目。第一个项目涉及实验装置本身,该装置内有一个分段表面陷阱,能够捕获 40 Ca + 和 88 Sr + 离子。我们描述了该装置和实施的修改以及为评估其性能而执行的特性测量。然后使用该装置开发和评估一种用于纠缠门的新型校准算法。量子门操作的性能由实验决定,取决于操作参数的确定和设置的准确性,以及这些参数的稳定性。开发的校准协议可以自动估计和调整被广泛用于离子阱量子信息处理器的两量子比特 Mølmer-Sørensen 纠缠门操作的实验参数。使用贝叶斯参数估计的协议在不到一分钟的时间内完成,由于校准错误导致的剩余中位门不保真度小于退相干源给出的不保真度。最后,使用了一种新颖的门方案来演示混合物种纠缠,它可以实现按顺序读出而不会扰乱整个寄存器,这是纠错的关键因素。相同的门方案也可用于在量子比特之间产生纠缠,这是量子位的概括。通过使用每个离子的更多级别,可以在相同数量的粒子中编码更多信息,从而增加量子计算希尔伯特空间的大小。
BFLOAT16 — 128 INT8 128 256 INT4 — 512 块本地数据存储器 32 KB 64KB AIE 阵列互连 B/W 1X 1X 压缩和稀疏性 否 是 暂存器片上存储器 PL uRAM AIE 存储器(512KB/块)
系列对应于 RESET 后 EDX 寄存器的位 [11:8]、执行 CPUID 指令后 EAX 寄存器的位 [11:8] 以及可通过边界扫描访问的设备 ID 寄存器的生成字段。2 模型对应于 RESET 后 EDX 寄存器的位 [7:4]、执行 CPUID 指令后 EAX 寄存器的位 [7:4] 以及可通过边界扫描访问的设备 ID 寄存器的模型字段。
80 ns 指令周期时间 544 字片上数据 RAM 4K 字片上安全程序 EPROM (TMS320E25) 4K 字片上程序 ROM (TMS320C25) 128K 字数据/程序空间 32 位 ALU/累加器 16 16 位乘法器,乘积为 32 位 用于数据/程序管理的块移动 重复指令以有效利用程序空间 用于直接编解码器接口的串行端口 用于同步多处理器配置的同步输入 用于与慢速片外存储器/外设通信的等待状态 用于控制操作的片上定时器 单 5V 电源 封装:68 引脚 PGA、PLCC 和 CER-QUAD 用于 EPROM 编程的 68 至 28 引脚转换适配器插座 提供商用和军用版本 NMOS 技术: — TMS32020 200 纳秒周期时间 . . . . . . . . CMOS 技术: — TMS320C25 100 纳秒周期时间 . . . . . . . . — TMS320E25 100 纳秒周期时间 . . . . . . . . — TMS320C25-50 80 纳秒周期时间 . . . . .
前 36 英寸的送风集气室和管道必须按照 NFPA 90B 的要求用金属板制成。送风集气室或管道必须有一个实心金属板底部,位于设备正下方,并且其中不能有开口、通风口或柔性风管。如果使用柔性送风管道,则只能将其放置在矩形集气室的垂直壁上,距离实心底部至少 6 英寸。金属集气室或管道可以连接到可燃地板底座,如果没有,则必须将其连接到设备送风管道法兰,以使可燃地板或其他可燃材料不会暴露于下流式设备的送风开口。将可燃(非金属)材料暴露于下流式设备的送风开口可能会引起火灾,从而造成财产损失、人身伤害或死亡。
如果对量子科学(即理论)没有透彻的理解,就不可能完全掌握现实和宇宙。本文的目的有两个,首先介绍量子信息处理的组成,然后讨论量子科学对理解现实的影响。我认为世界是完全量子的,而经典世界只是量子世界的一个极限情况。论点的关键是量子信息可以被视为一种生命现象。量子信息处理 (QIP) 一直是计算方法的主要主题。在这里,我们将其视为信息允许对世界进行非二元解释的方式。从这个意义上讲,量子信息处理在于理解纠缠如何成为连贯现实的基础,但又高度动态、充满活力和生动。我认为,信息是一种从无到有的创造生命现象。量子信息是实体、系统、现象和事件的关系视图(Auletta,2005 年)。
请完整阅读本手册。我们提供了必要的说明和指导以确保本设备成功运行。请注意以下事项: 电源、转换器和高频电缆中存在高压。这些设备内部均没有用户可维修的部件。请勿尝试卸下电源盖或转换器外壳。 电源打开时,请勿触摸设备上任何断开的电缆连接。 请勿在转换器与高压电缆断开的情况下操作电源。电缆中存在高压,可能会造成电击危险。 设备运行时,请勿尝试断开转换器高压电缆。 电源必须使用三脚插头正确接地。插入设备之前,请测试电源插座是否正确接地。 将超声波电源安装在没有过多灰尘、污垢、爆炸性或腐蚀性烟雾的区域,并避免极端温度和湿度。(有关规格,请参阅第 5 页。)请勿将电源放置在通风柜内。
Redwire 高级空间实验处理器 (ADSEP) 是一种全自动、多用途单舱式储物柜处理设施,用于进行各种生命和物理科学研究以及小批量生产。ADSEP 设施包含三个独立的热区,每个热区可容纳一个“微型实验室”盒式磁带,以及一台控制所有三个盒式磁带处理的内部计算机。每个盒式磁带外壳设计为为每个实验提供最多 2 级遏制,从而允许进行 HRL-2 级实验。该设施与盒式磁带的内容无关。因此,可以同时在不同的盒式磁带中进行完全独立的研究。盒式磁带是“热插拔”的,使工作人员能够成功地连续运行不同的实验。
• 独立的指令和数据存储器单元,带有 4 KB 数据缓存和 4 KB 指令缓存,以及由地址转换缓存 (ATC) 支持的独立存储器管理单元 (MMU),相当于其他系统中使用的 TLB。 • 处理器使用 16 个通用寄存器实现 113 条指令。 • 18 种寻址模式包括:寄存器直接和间接、索引、内存间接、程序计数器间接、绝对和立即模式。 • 指令集包括数据移动、整数、BCD 和浮点算术、逻辑、移位、位域操作、缓存维护和多处理器通信,以及程序和系统控制和内存管理指令 • 整数单元组织在六级指令流水线中。