摘要 — 近年来,室内定位系统 (IPS) 受到了机器人、导航、人机交互等许多研究领域的关注。然而,基于无源射频 (PRF) 技术的 IPS 仍然很少见。本文提出了一种基于接收信号强度 (RSS) 分布和高斯过程回归 (GPR) 的三维 (3D) IPS。传统的基于 RSS 的定位系统具有已知频率的发射器,而在提出的 PRf 机会信号 - 3D IPS (PRO-3DIPS) 中,系统既不部署新的发射器,也不使用任何发射器的先验知识。此外,PRO-3DIPS 集成了多个机会信号 (SoOP) 源、阴影、衰落,还可以捕获场景特征。在 3D 空间中基于 PRF 的 RSS 分布的数据收集和分析实现了 3D 定位功能。应用并比较了三种方法,以找到受场景影响最大的频带,以实现最佳定位性能,并用于估计 RSS 分布。 RSS 分布是通过在场景中测量固定网格上的 PRF 频谱来估计的。利用 RSS 分布,GPR 可以精确定位接收器位置。在实验场景中收集了 90 个网格位置的 RSS,每个位置有 100 个样本。实验结果表明,当
肿瘤浸润的B细胞通过产生针对肿瘤相关抗原的抗体发挥抗肿瘤作用。相反,B细胞可以通过产生抑制抗肿瘤免疫力的因素来促进肿瘤。在JCI,Bing Yang,Zhen Zhang等问题上。研究了B细胞受体信号(BCR)信号在抗肿瘤免疫中的作用,重点是含有GLY396对ARG396替代(HIGG1-G396R)在结直肠癌(CRC)中的人类免疫球蛋白G1(IgG1)的亚洲特异性变异的作用。流行病学分析表明,HigG1-G396R与CRC中无进展的生存之间存在关联。CRC的人类样品和小鼠模型显示出浆细胞,而不是B细胞,渗透了肿瘤微环境。值得注意的是,患有HIGG1-G396R变体的患者CD8 + T细胞,树突状细胞和三级淋巴结构密度增加。这些发现表明,HIGG1-G396R变体通过增强B细胞反应来抑制肿瘤,并表明调节BCR信号传导可以提高免疫疗法在癌症中的功效。
本检查基于珠段的技术,该技术包括基于参考DNA(探针)合成的荧光标记的基因组材料的杂交,该材料以可靠且比例的方式代表所有人类基因组,这些基因组所有人类基因组,这些基因组和以微观质体的形式(也称为微rar射线或简单地驱动)在物理平台上排列。将杂交后获得的荧光信号强度与制造商的内在参考进行了比较,并根据所获得的和预期信号强度,估计的增长和损失之间的原因。这是已经在临床实践中实施的诊断技术。
二维空间 三维空间 第四代操作系统 到达角 辅助全球定位系统 机载预警和空中指挥系统 加性高斯白噪声 基站 基于集群的路由协议 Cramer-Rao 下界 国防部增强型-119 联邦通信委员会 精度几何稀释 全球定位系统 组重复间隔 分层状态路由 初始作战能力 K-最近邻 局域网 基于位置的服务 视距 远程导航 位置服务中心 移动站 非视距 位置、计时、导航 相对距离 微发现 自组织路由 无线电地图 接收信号强度 接收信号强度指示器 到达时间差 到达时间 飞行时间 世界时协调 超宽带 Wi-Fi 定位系统
成熟曲线用于识别大脑成熟正常、延迟或异常的儿童。已经为儿科年龄范围内的各种 MRI 成像序列建立了规范的成熟轨迹。2 - 5 FLAIR 序列是大脑成像的主要手段,但目前关于成熟轨迹的信息有限,因为不同 FLAIR MRI 成像扫描仪的信号强度差异很大。在之前的一项研究 3 中,作者检查了 1 天至 4 岁儿童在 FLAIR 上的正常大脑成熟情况,发现在出生后 48 个月内,FLAIR 信号强度在 WM 区域呈现双相模式。其他几项研究主要在出生后的前 2 年研究了幼儿的成熟模式,使用了各种序列,包括 T1、T2、FLAIR、DTI 以及 T1 和 T2 映射。2、4、5
I. I Tratsuction下一代网络(包括5G及以后)将需要使用动态频谱共享和功率域多次访问来处理不断增加的移动数据流量[1]。为了使这一点成为可能,我们需要开发更准确的估计无线电环境的方法,包括信号强度和拟议服务区域中的频谱可用性。路径损失信息,指示由于不同访问点(AP)而提出的服务区域中信号质量的信息是室内无线电环境中网络部署计划的重要组成部分。因此,在部署AP之前获得预测的室内路径损耗图(IPM)或接收的信号强度(RSS)图是必不可少的,因为它可以准确估算建筑物内的信号强度和覆盖范围,并有助于APS的放置。此外,精确的IPM可以启用应用程序,例如精确的室内定位[2],认知无线网络[3]和移动机器人[4]。获得准确的IPM可以是耗时且劳动密集型的过程,因为它需要在拟议的服务区域中的许多参考点(RPS)进行测量以及测试AP的安装。为了解决此问题,已经提出了各种技术,例如基于参考点上进行的测量值预测IPM的插值方法,以及在不使用RPS的情况下预测IPM的生成方法。Racko等。[5]使用无线电图生成的线性和Delaunay插值技术。通过测量指定位置的RSS,他们能够通过使用两种不同的插值方法来计算完整的RSS。
胼胝体细胞毒性病变 (CLOCC) 也称为可逆性胼胝体压部病变轻度脑病或可逆性胼胝体压部病变综合征,在磁共振成像 (MRI) 上表现为胼胝体压部可逆性扩散受限。该病变与多种病因有关,包括细菌和病毒感染、代谢紊乱、药物、癫痫、恶性肿瘤和脑出血 [4,5] 。CLOCC 以细胞毒性水肿为潜在机制,被认为是继发性病变。CLOCC 患者的典型症状通常包括癫痫发作、意识障碍和谵妄 [6] 。放射学发现包括 T2 加权成像和液体衰减反转恢复上的高信号强度、T1 加权成像和急性期的低信号强度、弥散加权图像 (DWI) 上的高信号强度以及表观弥散系数 (ADC) 值降低 [6]。病变分为三种类型:位于胼胝体压部中央的小圆形或椭圆形病变、以胼胝体压部为中心但通过胼胝体纤维横向延伸到相邻白质的病变或以后方为中心但延伸到胼胝体前部的病变 [7]。预后方面,CLOCC 通常与良好的临床和放射学结果相关。病变通常在影像学检查中一周内消失,临床症状完全恢复,没有后遗症 [5]。
患有幻觉,从而降低了普遍性。直接应用先前的 INR 无法弥补这种信号强度不足,因为它们既适合信号也适合干扰因素。在这项工作中,我们引入了一个 INR 框架来增加这种体积描记器信号强度。具体来说,我们利用架构来实现选择性表示能力。我们能够将面部视频分解为血液体积描记器组件和面部外观组件。通过从该血液成分推断体积描记器信号,我们在分布外样本上展示了最先进的性能,而不会牺牲分布内样本的性能。我们在定制的多分辨率哈希编码主干上实现了我们的框架,通过比传统 INR 快 50 倍的速度实现实用的数据集规模表示。我们还提供了一个光学上具有挑战性的分布外场景的数据集,以测试对真实场景的泛化。代码和数据可以在 https://implicitppg.github.io/ 找到。