摘要 随着星系弱透镜的统计能力达到百分比级精度,需要大规模、逼真且稳健的模拟来校准观测系统,特别是考虑到随着勘测深度的增加,物体混合的重要性日益增加。为了捕捉剪切和光度红移校准中混合的耦合效应,我们定义了透镜的有效红移分布 nγ(z),并描述了如何使用图像模拟来估算它。我们使用一套广泛的定制图像模拟来表征应用于暗能量调查 (DES) 第 3 年数据集的剪切估计管道的性能。我们描述了多波段、多时期的模拟,并通过与真实 DES 数据的比较证明了它们的高水平的真实感。我们通过在我们的表面模拟上运行变体来分离产生剪切校准偏差的效应,并发现与混合相关的效应是平均乘法偏差的主要贡献,约为 -2%。通过生成随红移变化的输入剪切信号模拟,我们校准了有效红移分布估计中的偏差,并证明了这种方法在混合存在时的重要性。我们提供经过校正的有效红移分布,其中包含统计和系统不确定性,可用于 DES 第三年弱透镜分析。
1 简介 脑信号测量来自人脑的本能生物特征信息,反映了用户的被动或主动心理状态。脑信号模拟由大脑中数百万个神经元以信号形式处理的信息。这些脑信号类似于人的神经活动(包括感觉和运动活动)。通过处理脑信号可以了解人(或用户)的感觉和运动活动。随着新兴技术的发展,可以使用不同的传统(EEG、MEG、MRI、fMRI)和非传统信号处理技术(深度学习算法、决策树等)来分析和处理脑信号。所有传统版本的脑信号分析都包括特征提取步骤,然后在某个时间点进行分类过程。Jahankhani 等人。进行了实验,并使用离散小波变换(DWT)作为特征提取技术,从EEG脑信号中提取特征,多层感知器是分类技术,与径向基函数网络(RBF)一起使用[1],在训练性能方面,已经实现了准确的EEG信号分类。而Acharya等人已经使用EEG信号以及小波包变换(WPT)作为特征提取方法和支持向量机(SVM)作为分类方法[2]进行了实验。这些方法结合起来可以准确检测出癫痫(一种神经系统疾病)。同样,更多的其他特征
神经形态处理系统使用混合信号模拟/数字电子电路和/或忆阻设备实现脉冲神经网络,代表了一种有前途的技术,适用于需要低功耗、低延迟且由于缺乏连接或出于隐私考虑而无法连接到云进行离线处理的边缘计算应用。然而,这些电路通常噪声大且不精确,因为它们受设备间差异的影响,并且工作电流极小。因此,按照这种方法实现可靠的计算和高精度仍然是一个悬而未决的挑战,一方面阻碍了进展,另一方面限制了这项技术的广泛采用。从构造上讲,这些硬件处理系统具有许多生物学上合理的约束,例如参数的异质性和非负性。越来越多的证据表明,将这些约束应用于人工神经网络(包括用于人工智能的神经网络),可以提高学习的稳健性并提高其可靠性。在这里,我们深入研究神经科学,并提出网络级大脑启发策略,进一步提高这些神经形态系统的可靠性和稳健性:我们通过芯片测量来量化群体平均在多大程度上有效地减少神经反应的变化,我们通过实验证明皮质模型的神经编码策略如何允许硅神经元产生可靠的信号表示,并展示如何利用这些策略稳健地实现基本计算原语,如选择性放大、信号恢复、工作记忆和关系网络。我们认为,这些策略可以有助于指导使用噪声和不精确的计算基板(如亚阈值神经形态电路和新兴的记忆技术)实现的稳健可靠的超低功耗电子神经处理系统的设计。
抽象的神经形态处理系统实施具有混合信号模拟/数字电子电路和/或熟悉设备的混合信号神经网络代表了一种有希望的技术,用于需要低功率,低延迟,并且由于缺乏连接性或隐私问题而无法连接到离线处理的云,并且无法连接到离线处理。但是,这些电路通常嘈杂且不精确,因为它们受设备之间的变化影响,并且以极小的电流运行。因此,在这种方法之后,实现可靠的计算和高精度仍然是一个公开挑战,一方面阻碍了进度,另一方面有限地采用了这项技术的广泛采用。通过构造,这些硬件处理系统具有许多在生物学上合理的约束,例如参数的异质性和非同质性。越来越多的证据表明,将这种限制应用于人工神经网络,包括在人工智能中使用的限制,可以促进学习方面的鲁棒性并提高其可靠性。我们认为,这些策略对于指导设计可靠且可靠的超低功率电子神经处理系统,该系统使用嘈杂和不精确的计算基板(例如阈值神经形态电路和新兴的记忆技术)实施。Here we delve even more into neuroscience and present network-level brain-inspired strategies that further improve reliability and robustness in these neuromorphic systems: we quantify, with chip measurements, to what extent population averaging is effective in reducing variability in neural responses, we demonstrate experimentally how the neural coding strategies of cortical models allow silicon neurons to produce reliable signal representations, and show how to强有力地实施基本的计算基础,例如选择性放大,信号恢复,工作记忆和关系网络,从而利用此类策略。
简介:T 2 和 T 1 估计可改善各种病理的特征描述,但较长的扫描时间阻碍了定量 MRI (qMRI) 的广泛应用,因此已经开发了序列以实现高效的 3D 采集。例如,3D-QALAS 1 利用交错的 Look-Locker 采集和 T 2 准备脉冲来对 T 1 和 T 2 进行全脑量化。但是,3D-QALAS 应用恒定翻转角并在 5 个时间点重建图像,这些时间点由于冗长的回波序列期间的信号演变而出现模糊。总结图 1,我们建议通过以下方式改进 3D-QALAS:(1) 结合基于子空间的重建来解决完整的时间动态以消除模糊 (2) 使用与自动微分兼容的模拟通过 Cramer-Rao 界限 (CRB) 优化采集翻转角,(3) 并减少每重复时间 (TR) 的总采集次数以缩短扫描时间。方法:子空间重建:传统 3D-QALAS 应用 T 2 准备和反转脉冲并测量 5 次采集,每次采集都利用 4 度翻转的回声序列。不是为 5 次采集中的每次采集重建一个体积,而是让 𝐸 成为 3D-QALAS TR 中 𝐴 采集之一中的回声数量(通常 𝐴= 5,𝐸= 120 →𝑇= 120 × 5 = 600 𝑒𝑐ℎ𝑜𝑒𝑠/𝑇𝑅 ),其中 𝑇 是回声总数。我们生成一个信号演化字典,用 SVD 计算低维线性基 Φ,从而产生一个易于处理的重建问题 𝑎𝑟𝑔𝑚𝑖𝑛 𝛼 ‖𝑦−𝐴Φ𝛼‖ + 𝑅(𝛼) ,其中 𝐴 表示傅里叶、线圈和采样算子以及 𝑅 正则化。通过使用 𝑥= Φ𝛼 解析时空体积,我们旨在利用与 𝑇 回声 2 的字典匹配来估计更清晰的定量图。图 2 (A) 中的体内实验表明,使用子空间可以减少估计的 T 2 图中的模糊。 CRB 翻转角优化:我们通过最小化两种方式的 CRB 来优化 3D-QALAS 中的翻转角:(1) 优化每个回波序列的一个翻转角 (2) 优化每个回波序列中的所有翻转角。我们使用传统的 4 度翻转角初始化了这两种优化,利用了代表性组织参数 [T 2 =70ms、T 1 =700ms、M0=1] 和 [T 2 =80ms、T 1 =1300ms、M0=1],并最小化了基于 CRB 的成本函数。我们为 3D-QALAS 实现了自动微分兼容信号模拟 3,从而能够计算基于 CRB 的优化的梯度。减少采集:我们通过从 TR 末尾移除采集,设计了具有 A ={5,4,3} 采集的优化序列,从而加快了扫描速度。实验:我们在扫描仪上实施了针对每个回波序列进行优化的 3D-QALAS 序列,并使用 Mini System Phantom、型号 #136(CaliberMRI,美国科罗拉多州博尔德)和人类受试者(经 IRB 批准)上的常规和优化序列采集数据,进行了 3 次和 5 次采集(1x1x1mm3 分辨率,R=2)。我们比较了使用子空间重建(秩 = 3)和字典匹配估计的定量图。结果:优化序列:图 2(B)绘制了优化的翻转角和(C)与应用子空间重建进行定量估计时的传统序列相比的所得 CRB。优化可以减少 CRB 或者以更少的采集次数匹配传统的 5 次采集 CRB,从而有可能缩短扫描时间。模型和体内:图 3(A)和(B)显示了从模型和体内数据估计的图,其中每个 ETL 翻转角优化的序列(A=3,5 次采集)与恒定翻转角匹配。讨论和结论:未来的工作将实施全翻转角优化序列来解决未来实验中的 T 1 偏差。将子空间重建与自动微分启用的翻转角优化相结合,可获得改进的 3D-QALAS 序列,并将扫描时间缩短 1.75 倍。参考文献:[1] Kvernby, S. et al. J. Cardiovasc. Magn. Reson. 16 , 102 (2014)。[2] Tamir, JI 等人 Magn. Reson. Med. 77 , 180–195 (2017)。[3] Lee, PK 等人 Magn. Reson. Med. 82 , 1438–1451 (2019)。致谢:NIH R01 EB032708、R01HD100009、R01 EB028797、U01 EB025162、P41 EB030006、U01 EB026996、R03EB031175、R01EB032378、5T32EB1680