为了实现连续的移动健康监测,可穿戴传感器需要以轻巧、不显眼的包装提供与临床设备相当的性能。这项工作提出了一个完整的多功能无线电生理数据采集系统 (weDAQ),该系统已证明可用于耳内脑电图 (EEG) 和其他身体电生理学,使用由标准印刷电路板 (PCB) 制成的用户通用干接触电极。每个 weDAQ 设备提供 16 个记录通道、驱动右腿 (DRL)、3 轴加速度计、本地数据存储和可适应的数据传输模式。weDAQ 无线接口支持部署体域网络 (BAN),该网络能够通过 802.11n WiFi 协议同时聚合多个可穿戴设备上的各种生物信号流。每个通道可解析超过 5 个数量级的生物电位,噪声水平为 0.52 μV rms,带宽为 1000 Hz,峰值 SNDR 为 119 dB,CMRR 为 111 dB(2 ksps 时)。该设备利用带内阻抗扫描和输入多路复用器,动态选择良好的皮肤接触电极作为参考和传感通道。从受试者进行的耳内和前额 EEG 测量捕捉到了大脑 alpha 活动的调制、眼电图 (EOG) 特征性眼球运动以及下颌肌肉的肌电图 (EMG)。在休息和锻炼期间,在自然办公环境中对多个自由移动的受试者进行了同时的 ECG 和 EMG 测量。所展示的开源 weDAQ 平台和可扩展 PCB 电极的小尺寸、性能和可配置性旨在为生物传感界提供更大的实验灵活性,并降低新健康监测研究的进入门槛。
使用流行的脑机接口 (BCI) 分析信号和大脑活动行为是一个非常当前的课题,许多研究人员经常从各个方面进行研究。这种比较在研究人机环境系统中的信息和信号流时特别有用,特别是在交通科学领域。本文介绍了使用基于虚拟现实技术的专有模拟器对驾驶员行为进行的初步研究的结果。该研究使用研究人类思维及其特定区域对给定环境因素作出反应而发出的信号的技术。提出了一种基于虚拟现实的解决方案,限制了现实世界发出的外部刺激,并对获得的数据进行了计算分析。研究重点是交通状况及其对受试者的影响。测试由不同年龄段的代表参加,有驾照的和没有驾照的都有。本研究展示了我们设计和建造的 VR 技术研究台的原始功能模型。在 VR 条件下进行测试可以限制不良外部刺激的影响,这些刺激可能会扭曲读数结果。同时,它增加了可以模拟的道路事件范围,而不会给参与者带来任何风险。在所介绍的研究中,BCI 用于评估驾驶员的行为,从而可以记录受检者的选定脑电波活动。脑电图 (EEG) 用于研究大脑活动及其对来自虚拟现实创建的环境的刺激的反应。由于使用放置在头骨选定区域皮肤上的电极,因此可以检测电活动。介绍了用于信号和信息流模拟测试的专有测试台的结构,该测试台允许选择测量信号和参数记录方法。这项研究的一个重要部分是展示在对汽车驾驶员行为进行实际研究过程中获得的初步研究结果。
项目详情:该项目将开发一种用于智能车辆、家电或机器人操纵器的传感表面,该表面结合了本体感受、触觉和多种其他感觉。该表面将采用超材料的形式,其物理特性使其能够出色地控制其表面上的电磁信号流。这种“超皮肤”的优势在于其简单性 - 扩展表面上密集的“超原子”传感器网络将能够仅使用单个电气连接进行本体感受形状确定、损坏检测、附近物体的接近警告以及各种其他形式的感应。如果使用分立传感器和电路(当前的行业标准)制作这种皮肤,那么它可能非常复杂且成本高昂。它将需要许多数据总线线路、信号调节电路和用于过滤的本地处理。此外,它的功耗将使其成本高昂且效率低下。即使将布线内置在结构中,多个传感器也会给原本简单的物体增加很多复杂性。我们的方法截然不同,利用了最近开发的技术,使用超材料及其支持的电磁信号。我们不使用定制电路板或嵌入式线路,而是采用由“元原子”组成的超材料 - 耦合、无源(无动力)电磁谐振器,如开口环。这种 Meta-Skin 只需要在馈电点进行电气连接和处理,每个馈电点都可以处理数百个传感位置。Meta-Skin 的属性源于它能够支持限制在超材料中的电磁表面波(驻波)。我们的创新是利用这些驻波的属性来提供有关表面状况和环境的信息。表面的扭曲、元原子的损坏或附近物体的存在将以可预测的方式改变其驻波,并且可以通过精心设计元原子及其配置来控制这种改变的程度。该项目将以埃克塞特大学现有的工作为基础,并与牛津大学的合作者合作,开发和集成带有这些 Meta-Skin 的传感器,以增加它们可以感知的刺激类型。这将结合超材料、变形结构和其他先进材料的理念,开发用于压力(触摸)、剪切力、温度、湿度等的传感器。该项目的第一年将专注于开发其中一种传感器,然后将其与现有的元皮肤集成。然后将设计更多传感器,并用于创建多感官表面。对于项目的最后阶段,可以选择与牛津大学的合作者合作,将这些元皮肤应用于机器人执行器或智能车辆的组件,并在“真实世界”场景中对其进行测试。该项目将与英国顶尖大学和工业界的合作者合作,将基础物理学推向令人兴奋且具有影响力的现实世界应用。