本文将重点介绍脑电图 (EEG) 信号分析,重点介绍研究文献中提到的常见特征提取技术,以及可应用于各种应用。在这篇综述中,我们涵盖了时间域、频域、分解域、时频域和空间域中的单维和多维 EEG 信号处理和特征提取技术。我们还为讨论的方法提供了伪代码,以便从业者和研究人员可以在他们特定的生物医学工作领域中复制它们。此外,我们还讨论了人工智能应用,例如辅助技术、神经疾病分类、脑机接口系统以及它们的机器学习集成对应物,以完成 EEG 信号分析的整体流程设计。最后,我们讨论了可以在 EEG 信号分析的特征提取领域进行创新的未来工作。
摘要 — 脑机接口 (BCI) 是人与计算机之间的通信系统,无需使用物理控制设备即可反映人的意图。由于深度学习在从数据中提取特征方面具有很强的鲁棒性,因此在 BCI 领域应用深度学习解码脑电图的研究已经取得了进展。然而,深度学习在 BCI 领域的应用存在数据不足和过度自信的问题。为了解决这些问题,我们提出了一种新颖的数据增强方法 CropCat。CropCat 包含两个版本,CropCat-spatial 和 CropCat-temporal。我们通过在裁剪数据后连接裁剪后的数据来设计我们的方法,这些数据在空间和时间轴上具有不同的标签。此外,我们根据裁剪长度的比率调整标签。结果,我们提出的方法生成的数据有助于将因数据不足而导致的模糊决策边界修改为明显的。由于所提方法的有效性,与未应用所提方法相比,四个脑电信号解码模型在两个运动想象公共数据集上的性能得到了提高。因此,我们证明了 CropCat 生成的数据在训练模型时平滑了脑电信号的特征分布。关键词–脑机接口,脑电图,数据增强,运动想象;
(1) 维数 一般取值 1 或 2 ,当 时,要求数据量 在数千点以上,但 过大不能保证序列具有相同 的性质; 一定时,若 ,需要较大才能取得 较好的效果,但是太大会丢失序列的许多细节信 息。 Pincus [ 14 ] 研究认为 比 效果好,可使 序列的联合概率进行动态重构时提供更详细的信 息。 (2) 用来衡量时间序列相似性的大小。如果 选得太小,估计出的统计概率会不理想;若选得 太大,会丢失时间序列中很多细节,达不到预期的 效果。 Pincus [ 14 ] 通过对确定性和随机过程的理论分 析及其对计算和临床应用的研究,总结出取值为 ( 为原始序列的标准差 ) 能得出有效 的统计特征。 (3) 表示输入数据点,一般取值为 100 ~ 5000 。因此根据上述原则,本文取 , 。根据实验研究发现当 时,不同 状态的脑电信号的样本熵并无太大差异;当 时,不同状态的脑电信号的熵值有明显差异。 因此 取值为 100 。即用长度为 100 点,间隔为 4 点 的滑动窗计算 EEG 在运动想象期 (2 ~ 6 s) 的样本 熵序列,然后求该序列的均值作为该 EEG 的样本 熵。 ERS/ERD 现象主要出现在 C3 和 C4 电极对应的 感觉运动区上,例如,右手运动想象时可观测到 C3 电极对应的感觉运动区 ERD 现象,左手运动想 象时可观测到 C4 电极对应的感觉运动区 ERD 现
神经假体通过将脑信号转换成运动控制信号,使用户能够通过各种执行器实现运动。然而,要通过这些设备实现更自然的肢体运动,需要恢复体感反馈。我们使用特征学习能力(一种机器学习方法)来评估信号特征,以了解它们能否增强自然触觉和本体感觉刺激引起的神经信号的解码性能,这些刺激是从乌拉坦麻醉大鼠的背柱核 (DCN) 表面记录的。表现最好的单个特征尖峰幅度以 70% 的准确率对体感 DCN 信号进行分类。使用从 DCN 信号的高频和低频 (LF) 波段中提取的 13 个特征,最高准确率达到 87%。总体而言,高频 (HF) 特征包含有关外周体感事件的最多信息,但当从短时间窗口获取特征时,通过向特征集添加 LF 特征可以显著提高分类准确率。我们发现本体感觉主导的刺激在动物中的推广效果优于触觉主导的刺激,并且我们展示了信号特征有助于神经解码的信息如何随着动态体感事件的时间过程而变化。这些发现可能为可以激活 DCN 以替代体感反馈的人工刺激的仿生设计提供参考。虽然我们研究了体感结构,但我们研究的特征集也可能对解码其他(例如运动)神经信号有用。