输入信号电压 (V IN1 ).............................................................................................................................-0.3V 至 16V 输出电压,无负载.............................................................................................................内部限制为 1800V RMS 输出电流......................................................................................................................................... 8.0mA RMS(内部限制) 输出功率......................................................................................................................................................... 6.0W 输入信号电压 (BRITE 输入)..........................................................................................................................-0.3V 至 5.5V 输入信号电压 ( SLEEP ,V SYNC 输入).........................................................................................................-0.3V 至 5.5V 环境工作温度,零气流.........................................................................................................................0°C 至 70°C 存储温度范围.........................................................................................................................................-40°C 至 85°C 注 1:超过这些额定值可能会损坏设备。所有电压均相对于地。电流从指定端子流入为正,流出为负。
绝对最大额定值(注 1) 输入信号电压(V IN1)............................................................................................................................. -0.3V 至 16V 输出电压,无负载.........................................................................................................................内部限制为 1800V RMS 输出电流......................................................................................................................................... 8.0mA RMS(内部限制) 输出功率......................................................................................................................................................... 6.0W 输入信号电压(BRITE 输入)............................................................................................................. -0.3V 至 5.5V 输入信号电压(SLEEP、V SYNC 输入)............................................................................................. -0.3V 至 5.5V 环境工作温度,零气流.........................................................................................................................0°C 至 70°C 存储温度范围......................................................................................................................................... -40°C 至 85°C 注 1:超过这些额定值可能会损坏设备。所有电压均相对于地。电流在指定端子处为正,在指定端子处为负。
¾ ¾ 火焰检测探头电压:最大 300 Vac ¾ ¾ 最小电离电流:2.4 µA ± 0.3 µA ¾ ¾ 火焰探头电流限制:1 mA ¾ ¾ 火焰信号显示:0 ÷ 90 µA ¾ ¾ 火焰探头类型:电极或紫外线扫描型号 ESA UV-2 ¾ ¾ 棒或紫外线扫描探头线长度:< 30 m ¾ ¾ 高压点火变压器线长度:最大 2 m ¾ ¾ 探头导体间绝缘:> 50 M Ω(双重绝缘或双重保护电缆) ¾ ¾ 数字输入信号电压:与电源电压相同 ¾ ¾ 数字输入功耗:最大 5mA ¾ ¾ 锁定 / 复位输入滤波器:RC 100 Ω - 0.47 µF - 250 Vac ¾ ¾ 输出信号电压:与电源电压相同 ¾ ¾ 每个输出信号的电流:1.5 A ¾ ¾ 每个输出信号的电流(总计):4 A 每 10 秒。/ 分钟。¾ ¾ 负载保护保险丝:4 A 快速 ¾ ¾ 设备保护保险丝:1 A 不可更换 ¾ ¾ 电源电压扩展卡 EXP-2 和 EXP-4:24 Vac、115 Vac、230 Vac ¾ ¾ 电源电压扩展卡 EXP-2 和 EXP-4:最大 5mA ¾ ¾ 功率吸收扩展卡 EXP-2 和 EXP-4:与电源电压相同 ¾ ¾ 输出信号电压扩展卡 EXP-2 和 EXP-4:4 A(不受内部保险丝保护)
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。此电路是应用说明 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于补偿电阻器 R S 对桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 R S 串联的 100Ω 微调电位器调整。这里使用的 R PLAT 值低于 AN43 中的值,以提高动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。此范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。此电路是应用说明 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于补偿电阻器 R S 对桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 R S 串联的 100Ω 微调电位器调整。这里使用的 R PLAT 值低于 AN43 中的值,以提高动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。此范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
在大多数微波管中,信号被放置在空腔间隙中,并且当电子面对最大对立时,电子被迫在时间上跨越间隙。在反对下跨越间隙会导致能量转移到空腔间隙信号中。当间隙电压是正弦的时间变化时,电荷紧身固定是连续且均匀的,通常是这种情况时,在腔体和越过间隙的电荷之间没有能量的净传递。这是因为在半周期中,当能量传递与上一半循环时,在半周期中相反,导致循环中无净能量转移。要具有从电子束到间隙信号电压的净能量传递,最大值的最大值将压缩的电荷被压缩到薄板或束中,因此它需要更少的时间来跨越间隙,并且安排了束束的束缚,以使峰值间隙电压处于峰值间隙电压,从而使束最大的反对面和降低信号从信号信号到信号上。
摘要。音频放大器是经典的、常用的电子电路;特别是在高瓦数放大器的应用中;A 类音频放大器最受欢迎,并且具有最佳音质。然而,它们的扩展率低,效率低。例如,著名的 A 类电路模型:Krell KSA-100,由 3 对复合功率放大器组成,使用正负 45 伏的电源,会一直产生高电流和高功耗,即,当输入信号电压为零时,电路会产生流过最终功率放大器(1 安培对)的电流。这导致总电流始终达到 3 安培或 137 瓦。研究人员将进行研究,通过降低电源电压来减少这种条件下的功率损耗,但电路仍可以像以前一样有效地扩展音频信号。实验用交流电源变压器调节输入电压,可在28伏至145伏之间调节,使直流电源在10伏至45伏之间改变电压。在8欧姆负载下输入100mVpp的输入信号,1kHz正弦波频率,并将电压从45伏降低到输出放大器仍能保持输入信号。实验结果表明,当降低电源电压时,功率损耗相应减少。