LM193 系列是高增益、宽带宽设备,与大多数比较器一样,如果输出引线无意中通过杂散电容与输入端电容耦合,则很容易发生振荡。这仅在比较器改变状态时输出电压转换间隔期间出现。无需电源旁路即可解决此问题。标准 PC 板布局很有用,因为它可以减少杂散输入输出耦合。将输入电阻器减小到 < 10 k Ω 会降低反馈信号电平,最后,即使添加少量(1.0 至 10 mV)正反馈(滞后)也会导致如此快速的转换,以至于不可能因杂散反馈而产生振荡。简单地将 IC 插入插座并将电阻器连接到引脚将在小的转换间隔内引起输入输出振荡,除非使用滞后。如果输入信号是脉冲波形,具有相对较快的上升和下降时间,则不需要滞后。
摘要:由于空间粒子的吸收和散射,卫星信号在传播过程中的质量会下降。对于高信息速率卫星技术,这种质量下降会严重影响接收到的信息。这种质量下降还取决于链路和大气损耗。雨水和云对 10 GHz 以上频率的信号衰减有重大影响。在雨水和凝结云层期间,低仰角传输会增加有效路径长度并导致接收信号电平下降。频率 f 和仰角 θ 等发射信号参数的变化会显著影响大气损伤。本文研究了在 10-50 GHz 频率范围内较低仰角下自由空间损耗、雨水衰减和云衰减的影响。链路计算方法用于确定自由空间损耗。ITU-R Rec. P.837-4 和 ITU-R Rec. P.676-11 分别用于计算雨水和云衰减。使用 MATLAB 软件绘制并制表这三种损耗的结果。
She11man-B1uff-to-Ocean-Tower 无线电链路的平面图。链路分集配置。链路接收信号电平记录设置。按时间划分的传播状态,1989 年 3 月。按时间划分的传播状态,1989 年 4 月。按时间划分的传播状态,1989 年 5 月。按时间划分的传播状态,1989 年 7 月 静态传播条件的示例,状态 1。从传播状态 1 过渡到状态 2 的示例。状态 3,底部天线显示最高信号。状态 4,中间天线显示最高信号。状态 5,所有天线。显示严重下降的水平。多径衰减分布计算的路径轮廓。多径衰减分布。链路预检测载波噪声比分布。测量的折射率梯度分布。计算的双模 1。折射率梯度分布。对应于 0.5 概率的射线路径
分辨率对应于最小可能的距离变化,这会对输出信号产生可测量的变化。线性度是与理想线性函数(直线)的偏差。它主要以测量范围最终值(满量程)的百分比表示。响应时间是传感器从最大信号电平的 10% 上升到 90% 所需的时间。对于具有数字信号处理的传感器,此时间对应于计算确定测量值所需的时间。周围环境的温度变化会导致测量值的明显偏移。该温度漂移主要与温度变化成比例,例如以 0.08%/K (∆T) 为单位指定。重复精度 (R) 是在 23 0 C + 5 0 C 环境温度下连续测量 8 小时后的测量数据差。下面讨论的传感器(图 1,图表)提供与测量距离成比例的模拟输出信号。Baumer 的测量传感器技术涵盖了广泛的应用领域,具有不同的型号 - 但应根据特定应用精确选择这些型号
I.1 一些历史介绍 1 I.1.1 谐振接收器、滤波器、相干器和平方律检波器(检波接收器) 1 I.1.2 Audion 的发展 2 I.2 当今概念 4 I.2.1 单次转换超外差 4 I.2.2 多次转换超外差 8 I.2.3 直接混频器 14 I.2.4 数字接收器 17 I.3 全数字无线电接收器的实例 23 I.3.1 数字信号处理功能块 25 I.3.2 作为关键组件的 A/D 转换器 26 I.3.3 转换为零频率 30 I.3.4 准确性和可重复性 33 I.3.5 用于频率调谐的 VFO 34 I.3.6 其他所需硬件 36 I.3.7 通过子采样 37 I.4 便携式宽带无线电接收器的实例 39 I.4.1 宽接收频率范围的模拟射频前端 40 I.4.2 后续数字信号处理 42 I.4.3 解调并测量接收信号电平 43 I.4.4 频率占用的频谱分辨率 45 参考文献 46 延伸阅读 48
美国国家标准与技术研究所正在研究一种原型低温热传递标准 (CTTS),作为低信号电平下的潜在交流-直流传递标准 [1, 2]。最近,我们用 HTS 传输线改造了低温标准,以提高其性能。电子低温设备的一个常见问题是将直流和交流信号从室温参考平面传送到低温设备。这对于 errs 来说尤其令人担忧,因为校准的仪器必须处于室温下。由于大多数金属和合金的电导率和热导率成正比,因此在试图实现低电阻和低热导率时会出现困境。对于超导体,由于消除了电子对该值的贡献,临界温度 (Tc) 以下的热导率可能会急剧下降。就超导状态下的电性能而言,直流电阻降至零,载流能力高,交流传输特性在感兴趣的频率范围内足够。我们实施了由高质量结晶薄膜 YBa2Cu)Ox (YBCO) 制成的共面传输线。YBCO 的临界温度接近 90 K,因此在 77 K 时它已进入超导状态。我们使用此线在低温恒温器的 77 K 和 4 K 级之间传输电信号。
除了声速之外,还有一个非常有趣的数据可以了解气体成分;MiniSonic- PSD(或 ISD)越来越多地用于新项目中的清管器检测。天然气管道主要使用泡沫清管器来清除油或其他沉积物。泡沫清管器不太硬,其速度与流速一样快,这给机械清管器信号检测器带来了问题。同样,通过清管器噪音听觉检测(一些公司称此类检测器为超声波)可以对新的泡沫清管器进行检测,但这种噪音可能低于使用过的清管器的环境噪音,存在无法检测的风险。因此,在这种情况下,通过超声波屏障进行检测具有许多优势。唯一的条件是要有良好的超声波信号电平。- 可以使用两个夹式探头,它们以相同的直径彼此相对安装,一个是发射器,另一个是接收器。信号限制来自气体压力(需要高压率)和管道厚度,这限制了频率选择并可能传输噪声。因此,在安装之前必须进行初步测试。- 确保信号的最佳解决方案是安装插入式传感器并让其刚好与管道内表面对齐。
RS485接口广泛应用于工业控制、远程抄表等领域,而这些领域经常受到严重的静电损害。本文提出了一种无需额外工艺改造的片上TVS(OCT)结构和一种用于RS485收发器IC的新型静电放电方法。它由一系列齐纳二极管组成,采用5V/18V/24V 0.5μm CDMOS工艺制作。对提出的OCT进行了100ns脉冲宽度的传输线脉冲(TLP)测试。驱动电路本身也可用作ESD器件。OCT触发电压与RS485标准的信号电平兼容。OCT器件的人体模型(HBM)防护等级高达16.34kV。对集成OCT的RS485收发器也进行了测试,以验证其可靠性。结果表明,它能够通过 IEC61000-4-2 接触 ±10kV 应力和 IEC 61000−4−4 电快速瞬变 (EFT) ±2.2kV,不会出现任何硬损坏和闩锁问题。集成 OCT 的 RS485 收发器可实现高达 500 kbps 的无错误数据传输速率。该芯片占用 2.4 × 1.17mm 2 的硅片面积。关键词:片上 TVS (OCT);传输线脉冲 (TLP);RS485 齐纳二极管。
版权所有 © 2009 SAE International 摘要 时间触发网络技术(如 TTP(时间触发协议))已开始用于关键的航空航天应用,如飞行控制。虽然 TTP 提供了严格的确定性和容错规范,但它并未定义物理层。TTP 的“事实上的”物理层 RS-485 在许多方面存在不足。这些不足包括相对较低的最小发射器电压、较低的接收器阈值,以及在许多方面缺乏特异性。后者包括总线信号电平、发射器过零失真和接收器过零容差、隔离方法、终端输出噪声、共模和噪声抑制以及输入阻抗。MIL-STD-1553 已在飞行和任务关键型军事应用中部署了数十年,它定义了一个经过高度验证且强大的物理层。本文介绍了 MIL-STD-1553 的物理层作为与 TTP 一起使用的候选。简介 物理层是飞行关键应用中使用的总线和网络的重要组成部分,需要权衡拓扑、数据速率、电缆长度、功率和成本。时间触发技术(如 TTP(时间触发协议)和 FlexRay)使用多种拓扑,包括多点总线以及有源和无源星型。TTP 未指定物理层,因此部署了多种实现,而不是使用通用标准。MIL-S
鉴于轻型无线电和处理技术的可用性,使用气象气球的频谱传感系统变得可行。这种气球可在高达 40 公里的空域中航行,并可提供鸟瞰图和清晰的地面和空中频谱使用情况。在本文中,我们介绍了 SkySense,它是 Electrosense 传感框架的扩展,具有移动 GPS 定位传感器和本地数据记录。此外,我们还介绍了 6 种不同的传感活动,针对多种地面或空中技术,如 ADS-B、AIS 或 LTE。例如,对于 ADS-B,我们可以清楚地得出结论,检测到的飞机数量对于每个气球高度都是相同的,但由于碰撞,消息接收率会随着高度的增加而急剧下降。对于每个传感活动,都描述了数据集,并给出了一些示例频谱分析结果。此外,我们还分析和量化了从空中感知时可见的重要趋势,例如温度和硬件变化、环境干扰水平的增加以及轻量级系统的硬件限制。一个关键的挑战是系统的自动增益控制和动态范围,因为在 30 公里以上导航的无线电可以看到非常广泛的可能信号电平范围。所有数据都可通过 Electrosense 框架公开获取,以鼓励频谱感知社区进一步分析数据或激励使用气象气球进行进一步的测量活动。