在2020年,我们鉴定了癌症基因组图集(TCGA)中的癌症特异性微生物信号[1]。多个同行评审的论文独立验证或扩展了我们的发现[2-12]。鉴于这种影响,我们仔细考虑了Gihawi等人的关注。[13]批处理校正和数据库污染具有人工的宿主序列,从而产生了癌症类型特异性微生物组的外观。(1)我们通过比较了每批次的原始和VOOM-SNM校正数据,测试了批处理校正,发现了预测等效性和显着性相似的功能。我们发现了使用现代微生物组特异性方法(Conqur [14])的一致结果,并且在限制在独立的,高度污染的队列中发现的分类单元时。(2)使用conterminator [15],我们发现原始数据库中的人类污染水平较低(基因组的约1%)。我们证明了Gihawi等人对人类读物的发现增加。[13]是由于使用了较新的人类基因组参考。(3)我们开发了详尽的方法,这是清洁repseq的敏感性两倍的方法。我们全面拥有许多人类(PAN)基因组参考的宿主数据。我们对此重复了所有分析和Gihawi等。[13]管道,发现癌症类型的微生物组。这些广泛的重新分析和更新的方法验证了我们最初的结论,即TCGA中存在癌症类型的微生物特异性标志,并表明它们对方法论很强。
摘要 - 空气写入识别是一项任务,涉及使用手指运动在自由空间中写的字母。这是手势识别的一种特殊情况,手势与特定语言的字母相对应。脑电图(EEG)是一种用于记录大脑活动的非侵入性技术,已被广泛用于脑部计算机界面应用中。杠杆eeg信号用于空气写作识别提供了一种有希望的替代输入方法,用于人类计算机相互作用。空气写作识别的一个主要优点是用户不需要学习新的手势。通过串联公认的字母,可以形成各种各样的单词,使其适用于更广泛的人群。但是,在使用脑电图信号识别空气写作方面的研究有限,这构成了本研究的核心重点。首先构建了包含在编写英语大写字母过程中记录的EEG信号的NeuroAir数据集。然后与不同的深度学习模型结合探索各种功能,以实现准确的空气写作识别。这些功能包括处理后的脑电图数据,独立的组件分析组件,基于源域的侦察时间序列以及基于球形和头部 - 基于基于的特征。此外,全面研究了不同EEG频带对系统性能的影响。这项研究中达到的最高准确度是44。04%使用独立的组件分析组件和EEGNET分类模型。结果强调了基于EEG的空气写入识别作为人类计算机交互应用中替代输入方法的用户友好模态的潜力。这项研究为未来的进步树立了强大的基准,并证明了基于EEG的空气写作识别的可行性和实用性。
摘要:在本文中,我们提出了基于规范相关分析(CCA)的EEG信号的分类算法,并与自适应过滤整合。它可以增强大脑 - 计算机接口(BCI)拼写中的稳态视觉诱发电势(SSVEP)的检测。通过删除背景脑电图(EEG)活动,在CCA算法前采用了一种自适应过滤器来提高SSVEP信号的信噪比(SNR)。开发了整体方法是为了整合与多个刺激频率相对应的递归最小二乘(RLS)自适应过滤器。该方法由实际实验从六个目标记录的SSVEP信号和Tsinghua University的40个目标的公共SSVEP数据集中记录下来的SSVEP信号。比较了CCA方法的精度和基于CCA的集成RLS滤波器算法(RLS-CCA方法)。实验结果表明,与纯CCA方法相比,提出的基于RLS-CCA的方法显着提高了分类精度。尤其是当脑电图的数量较低时(三个枕发电极和五个非枕骨电极)时,其优势更为明显,精度达到91.23%,这更适合于高密度EEG不容易收集的可穿戴环境。
脑部计算机界面的关键部分是脑电图(EEG)运动任务的分类。诸如眼睛和肌肉运动之类的工件损坏了脑电图信号并降低分类性能。许多研究试图从EEG信号中提取不是冗余和歧视性特征。因此,本研究提出了一种信号预处理和用于脑电图分类的特征提取方法。它包括使用离散的傅立叶变换(DFT)作为特定频率的理想滤波器来删除伪像。它还将脑电图通道与强调脑电图信号的有效通道交叉相交。然后,计算出跨相关的结果,以提取使用支持向量机(SVM)对左右指的运动进行分类的特征。应用遗传算法以找到两个EEG类信号的DFT的区分频率。通过13受试者的手指运动分类确定了所提出的方法的性能,实验表明平均准确性高于93%。
定位研究 20 – 22 旨在识别大脑对特定刺激的激活模式,以及连接研究(功能性或有效) ,其重点是研究大脑各区域之间的功能相互作用,无论是在大脑处于休息状态还是在执行特定任务时。 23 – 27 然而,现在众所周知,大脑是高度动态的 28 – 32 因此,为了更全面地了解其功能,需要能够提取大脑记录中的时间信息的方法。与空间域相比,考虑时间域进行分析的 fNIRS 研究数量要少得多。 33 – 40 例如,在参考文献 33 中,通过应用 Higuchi 分形维数算法 41 表明 fNIRS 信号具有高度复杂度。将小波变换应用于 fNIRS 信号,并表明小波系数可用于训练分类器。在参考文献38–40中,熵已被用来评估患者群体(如患有阿尔茨海默病、注意力缺陷多动障碍和脑外伤的患者)中 fNIRS 信号的复杂性,表明它携带的信息可能与疾病有关。所有这些研究表明,在 fNIRS 信号的复杂特征中存在与潜在大脑活动相关的信息。在本文中,我们利用可视性图(VG)提出了一种揭示 fNIRS 时间序列分形特性的方法。VG 是一种最近引入的方法,它将时间序列映射到图形(称为 VG)。正如将要讨论的,构建图的拓扑属性与时间序列的分形和复杂性有关。42、43 与传统的分形分析方法相比,42 VG 在计算上不太复杂,并且已经用于各种研究。 44 – 49 例如,江等人利用心电图表明,采用 VG 分析可以揭示由调解训练引起的动态变化,表现为规律的心跳,这与自主神经系统的调整密切相关。44 朱等人将基于 VG 的方法应用于酗酒识别,表明该方法有望将酗酒者与控制饮酒者区分开来。48 在参考文献 47 中,结果表明,将 VG 应用于脑电图 (EEG) 信号可以提供区分自闭症儿童和非自闭症儿童的特征。在参考文献 49 中,我们已经表明,通过 VG 提取的 GCaMP6 小鼠钙记录的时间特征带有可用于解码行为的鉴别信息。这里需要注意的是,VG 与功能连接研究中常用的基于图论的方法之间的区别。50 , 51 在典型的功能连接研究中,图是在空间域中构建的,即图中的节点对应于通道或体素的位置,并且两个节点之间的链接基于与两个节点相关的时间序列的统计相似性形成,通过相关性等度量来量化。另一方面,正如将在第 2 节中讨论的那样,在 VG 中,节点对应于时间序列中的时间点,并且链接基于时间点之间的自然可见性形成(图 1)。一旦为每个时间序列形成图,就可以提取图度量来表示时间序列的不同属性。在本文中,我们使用 VG 研究两种条件下 fNIRS 时间序列的分形性:当大脑处于休息状态时和当大脑从事任务时。在两种静息状态条件和两种任务条件下记录了 9 名健康男性受试者的 fNIRS 时间序列。从每个时间序列为每个通道和每种条件构建 VG。然后提取可视性图的无标度性 (PSVG) 的功率并在不同条件下进行比较。据我们所知,这是第一项使用 VG 揭示 fNIRS 记录时间序列时间特征的研究,证明了其在识别 fNIRS 记录中的特征方面的可行性,这些特征可用于获得有关大脑功能的新见解。本文的其余部分组织如下。第 2 节介绍了本研究中用于分析的方法。实验设置的详细信息在第 3 节中给出。第 4 节介绍了结果,最后,在第 5 节中提供了一些讨论。第 2 节描述了本研究中使用的分析方法。第 3 节给出了实验装置的详细信息。第 4 节介绍了结果,最后,第 5 节进行了一些讨论。第 2 节描述了本研究中使用的分析方法。第 3 节给出了实验装置的详细信息。第 4 节介绍了结果,最后,第 5 节进行了一些讨论。
摘要 :传统脑机系统复杂、昂贵,情绪分类算法缺乏对脑电信号不同通道间内在关系的表征,准确率还有提升空间。为降低脑电研究门槛,充分利用多通道脑电信号中蕴含的丰富信息,提出并实现一个简便易用的脑机系统,用于快乐、忧伤、悲痛、平静四种情绪的分类。该系统采用卷积注意机制与完全预激活残差块的融合,即基于注意卷积的预激活残差网络(ACPA-ResNet)。在硬件采集和预处理阶段,我们采用ADS1299集成芯片作为模拟前端,利用ESP32单片机对脑电信号进行初步处理。数据通过UDP协议无线传输到PC机进行进一步的预处理。在情绪分析阶段,ACPA-ResNet能够自动从脑电信号中提取和学习特征,通过学习时频域特征实现对情绪状态的准确分类。ACPA-ResNet在残差网络的基础上引入注意力机制,自适应地为每个通道分配不同的权重,使其在空间和通道维度上关注更有意义的脑电信号,同时避免了深度网络架构带来的梯度弥散和爆炸问题。经过对16名受试者的测试,系统实现了稳定的脑电信号采集和传输。新网络显著提高了情绪识别的准确率,平均情绪分类准确率达到95.1%。
基因工程进步已导致重组腺相关病毒(RAAV)成为开发有效基因疗法的宝贵工具。RAAV的生产容易受到脱靶异质包装的影响,其影响仍在理解。在这里,使用粘附和悬浮液HEK293细胞同时生产具有四基因组长度的RAAV载体,以了解5'ITR终止。AAV8载体是由人FVIII质粒产生的,用于具有特定截断的4,707个核苷酸的全长货物,从而产生较小的基因组。通常,Raav的特征是将空的衣壳与全帽夹区分开,但是对于这项工作,该描述是不完整的。这项研究中的小基因组的特征是电荷检测 - 质谱法(CD-MS)。使用CD-MS,在常规归因于部分的范围内的包装基因组得到解析和定量。此外,碱性凝胶和QPCR用于评估包装基因组的身份。一起,这些结果显示了要封装的单位长度基因组的倾向。包装的基因组是作为从5'ITR发出的复制中间体发生的,表明HEK293细胞更喜欢单位长度基因组,而不是5'ITR终止和先前从SF9 Cell Systems观察到的5'ITR终止和异构DNA包装。由于两种制造过程均已使用并不断评估以生产临床材料,因此这种理解将使RAAV设计用于基础研究和基因治疗。
摘要:帕金森氏病是一种神经退行性疾病,就认知和运动方面而言,对患者运动的影响逐渐使人衰弱。早期检测对于有效的疾病管理和更好的患者预后至关重要。有许多检测这种疾病的技术,但是帕金森氏病早期发现的最有趣的方法之一是脑电图,这是一种无创且具有成本效益的诊断工具来测量大脑活动。最近的研究表明,深度学习网络可以处理复杂的数据来分析并提取特征。这些神经网络之一称为另一个移动网络(YAMNET),该网络最初是为使用时间频率信息分析语音信号的。在这项研究中,提出了一种使用Yamnet的新方法,用于使用脑电图脑信号检测帕金森氏病患者,因为频率信息似乎与帕金森氏病检测非常相关。使用Internet上可用的开放访问数据集评估了该方法,该数据集由帕金森氏病患者和健康对照人员的脑电图记录组成,获得的准确率为98.9%。结果表明,Yamnet可能是对帕金森氏病初始检测的令人鼓舞的工具。这可以改善患者治疗并刺激该领域的未来研究。
摘要:在脑部计算机界面(BCI)系统中,识别运动成像(MI)脑信号提出了挑战。已建立的识别方法从SSVEP,AEP和P300等模式中实现了有利的性能,而MI的分类方法需要改进。因此,寻求一种表现出高精度和鲁棒性在MI-BCI系统中的应用是必不可少的。在这项研究中,拼音搜索算法(SSA)优化的深信信仰网络(DBN)(称为SSA-DBN)旨在识别经验模式分解(EMD)提取的EEG特征。通过SSA获得的优化超参数增强了DBN的性能。我们的方法的功效在三个数据集上进行了测试:两个公共和一个私人。结果表明,相对较高的精度率,表现优于三种基线方法。具体来说,在私人数据集上,我们的方法的准确度为87.83%,标志着标准DBN算法的10.38%改善。对于BCI IV 2A数据集,我们记录了86.14%的精度,超过DBN算法的精度为9.33%。在SMR-BCI数据集中,我们的方法达到了87.21%的分类精度,比常规DBN算法高5.57%。这项研究表明,MI-BCI的分类能力增强,有可能导致BCI领域的进步。
可靠的脑电图(EEG)信号获取对于医疗疾病,脑机构界面(BCIS)和神经科学研究至关重要。然而,心电图(ECG)和电解图(EOG)伪像经常污染EEG记录,损害数据质量和解释性。传统的删除方法可能会扭曲脑电图信号,或需要其他传感器进行ECG和EOG获取。本研究使用多元预测方法将删除伪像作为回归任务,从EEG数据本身重建ECG和EOG信号。我们的方法在两个独立数据集上进行了严格评估,用于ECG和EOG信号,并在不同个体的未见数据上进一步验证。使用平方误差(MSE),平均绝对误差(MAE)和峰值信噪比(PSNR)评估性能。我们的方法实现了与使用实际的ECG和EOG记录的常规方法相媲美的方法,证明了使用原始EOG记录清洁清洁的脑电图和脑电图之间的PSNR为39 dB。这使我们的方法成为经济高效且非侵入性的替代方案。这些发现提出了脑电图噪声过滤研究的有希望的新方向。