电子邮件:tereza.smejkalova@fgu.cas.cz简介由Grin Genes编码的N-甲基-D-天冬氨酸受体(NMDARS)是离子型谷氨酸受体,它们是中枢神经系统中几乎所有兴奋性突触的离子谷氨酸受体。经典的NMDAR具有特征性的生物物理特征,需要两种激动剂(谷氨酸和甘氨酸/ D-丝氨酸)的结合,在静息膜电位上,Mg 2+的强阻滞,高Ca 2+渗透性,相对较慢的激活和减速性动力学Kinetics [1]。这些特性使NMDAR可以作为突触前谷氨酸释放和突触后去极化的巧合探测器,从而去除Mg 2+块。所得的NMDAR介导的Ca 2+流入是一个关键信号,该信号调节了突触强度的活动依赖性变化[2],它是神经回路及其
背景 • Ulixertinib 是一种细胞外信号调节激酶家族激酶 (ERK1 和 ERK2) 的小分子抑制剂,目前正在开发为一种新型抗癌药物。 • 在 ulixertinib 治疗晚期实体恶性肿瘤的 I/II 期研究中,已观察到中枢神经系统 (CNS) 抗肿瘤反应。 • 我们假设 ulixertinib 可以穿过完整的血脑屏障 (BBB),并将改善 MAPK 激活的神经胶质瘤的反应。 • 该试验最初包括成人 NF1 相关神经胶质瘤和 CIC 突变少突神经胶质瘤,因为我们之前已证明 NF1 肿瘤中的 MAPK 信号传导增强,并且在 CIC 突变型与 CIC 野生型少突神经胶质瘤的临床前模型中对 MAPK 抑制的敏感性增加。 • 鉴于患者招募缓慢,试验现已修改为包括所有具有 MAPK 激活的神经胶质瘤。
据报道,传统的基于细胞毒性的 NSCLC 疗法的中位生存期为 52 周,即使在适合接受免疫疗法的患者的病情有所改善 (4,5)。尽管有这些好处,但仍然迫切需要新的治疗策略。据报道,多种信号可激活 RAS / RAF / MEK / 细胞外信号调节激酶 ( ERK ) 通路,进而影响肿瘤增殖、生存、迁移、血管生成甚至对给药干预的抵抗力 (6,7)。因此,这些通路已成为现代转化医学疗法的靶向目标。在具有可识别的 EGFR 突变的临床病例中,靶向上游表皮生长因子受体 ( EGFR ) 已为 NCSLC 患者带来显著益处 (8)。相比之下,尽管在近 30% 的 NSCLC 临床病例中观察到了克里斯汀大鼠肉瘤病毒 (KRAS) 突变 (9),但 RAS 特异性干预措施尚未带来任何临床益处 (10)。
摘要:癌症干细胞(CSC)代表了罕见的肿瘤细胞群,具有具有自我更新和分歧的能力的干细胞特性。现在,这些细胞被广泛接受为负责肿瘤起始,发育,对常规疗法的抗性和复发性。因此,对控制CSC涉及的分子机制的更好理解对于改善诊断和疗法的患者管理至关重要。CSC受肿瘤微环境以及内在遗传和表观遗传调节剂的信号调节。H19,第一个识别的lncRNA参与了许多不同癌症类型的发展和发展。最近,已证明H19与不同类型的癌症类型中的CSC有关。本综述的目的是概述H19在CSC的调节中的作用和机制。我们总结了H19如何调节CSC分裂和癌细胞重编程,从而影响转移和耐药性。我们还讨论了H19的潜在临床意义。
升降舵是飞行控制表面,通常位于飞机后部,用于控制飞机的俯仰、迎角和机翼升力。最关键的驱动装置是纵向飞机控制,其故障将导致灾难性的飞机坠毁。本文提出了一种飞机高冗余容错控制 (HRFTC) 策略,以适应关键传感器和执行器的故障。针对传感器提出了改进的三重模块冗余 (MTMR),针对执行器提出了双重冗余 (DR)。详细说明了控制律、飞行员命令、信号调节和故障的工作原理。此外,PID 控制器用于通过将升降舵位置与设定点进行比较来调整升降舵位置。结果表明,当发生故障时,系统成功检测到故障并快速容忍故障,而不会干扰飞机的飞行。这项研究对于航空电子行业制造高度可靠的机器以确保人身和环境安全具有重要意义。
摘要 牙釉质细胞瘤是亚洲最常见的牙源性肿瘤之一。在过去的十年中,许多研究表明丝裂原活化蛋白激酶(MAPK)信号通路,尤其是细胞外信号调节激酶1/2(ERK1/2)信号通路存在基因突变。成纤维细胞生长因子受体2(FGFR2)、大鼠肉瘤病毒(RAS)和B型快速加速纤维肉瘤(BRAF)的突变能够引起ERK1/2信号通路的持续激活,从而使肿瘤细胞增殖不受控制。由于ERK1/2信号通路在细胞生长和细胞存活中的作用,该通路的上调可导致大约三分之一的人类肿瘤,包括牙釉质细胞瘤。在发现几种癌症的基因突变后,许多抑制剂被设计出来以针对这些突变。在此,我们回顾了成釉细胞瘤中 FGF-MAPK 信号通路的改变,以及作为成釉细胞瘤辅助或新辅助治疗的靶向治疗,特别是在需要进行广泛手术切除的情况下。
如何解释感官信息取决于环境。然而,环境如何影响大脑中的感觉处理仍然难以捉摸。为了研究这个问题,我们结合了计算建模和小鼠皮质神经元的体内功能成像,这些神经元在触觉感官辨别任务的逆转学习过程中发挥作用。在学习过程中,第 2/3 层体感神经元增强了对奖励预测刺激的反应,这可以解释为顶端树突的增益放大。奖励预测误差减少,对结果预测的信心增加。在规则逆转后,外侧眶额皮质通过去抑制 VIP 中间神经元编码了一个表示信心丧失的环境预测误差。皮质区域中预测误差的层次结构反映在自上而下的信号中,这些信号调节初级感觉皮质中的顶端活动。我们的模型解释了大脑中如何检测到环境变化,以及不同皮质区域中的错误如何相互作用以重塑和更新感官表征。
KP276A1201 是一款基于电容原理的微型数字绝对压力传感器 IC。它采用表面微加工技术,具有采用 BiCMOS 技术实现的单片集成信号调节电路。传感器将压力转换为 12 位数字值,并通过 SENT 协议(SAE J2716 修订于 2016 年 4 月)发送信息。此外,还提供了用于外部负温度系数 (NTC) 温度传感器的接口。NTC 提供的温度信息也被数字化为 12 位值,并通过 SENT 协议传输。一个特殊的安全功能是集成诊断模式,允许测试传感器单元以及信号路径。此诊断通过为设备供电触发。该芯片采用“绿色”介质坚固的 SMD 外壳封装。该传感器主要用于测量歧管气压,但也可用于其他应用领域。该设备的高精度、高灵敏度和安全特性使其非常适合先进的汽车应用以及工业和消费应用。