包括神经蛋白浮动的抽象炎症被认为是保护性反应,可用于修复,再生和恢复中枢神经系统中受损的组织。由于慢性应激,自由基的年龄相关,亚临床感染或其他因素导致生存率降低和神经元死亡增加,持续的肿瘤肿瘤。 昼夜节日症状是改变睡眠/唤醒周期的症状,是神经退行性疾病的最早迹象之一。 大脑的特异性或核心昼夜运动脑脑和肌肉ARNT(芳基氢核受体核转运剂)类似蛋白1(BMAL1)或反式Rev-erbα的蛋白质均具有损害的神经功能和cognitive-cognitive-Mance。 始终如一地,已显示出炎性细胞因子和宿主免疫反应的转录本与昼夜节律的破坏并行相同。 糖皮质激素既表现出类似于核心时钟反式激活者BMAL1和组织特异性超拉节奏的节奏的糖皮质激素,这对于控制神经炎症和重新建立稳态至关重要。 被广泛接受的是,糖皮质激素抑制核因子-Kappa B(NF-κB)介导的反式激活并抑制炎症。 最近的机械阐明表明,核心时钟成分还调节NF-κB介导的大脑和外围组织的反式激活。持续的肿瘤肿瘤。昼夜节日症状是改变睡眠/唤醒周期的症状,是神经退行性疾病的最早迹象之一。大脑的特异性或核心昼夜运动脑脑和肌肉ARNT(芳基氢核受体核转运剂)类似蛋白1(BMAL1)或反式Rev-erbα的蛋白质均具有损害的神经功能和cognitive-cognitive-Mance。始终如一地,已显示出炎性细胞因子和宿主免疫反应的转录本与昼夜节律的破坏并行相同。糖皮质激素既表现出类似于核心时钟反式激活者BMAL1和组织特异性超拉节奏的节奏的糖皮质激素,这对于控制神经炎症和重新建立稳态至关重要。被广泛接受的是,糖皮质激素抑制核因子-Kappa B(NF-κB)介导的反式激活并抑制炎症。最近的机械阐明表明,核心时钟成分还调节NF-κB介导的大脑和外围组织的反式激活。In this review we discuss evidence for interactions between the circadian clock components, glucocorticoids and NF- κ B signaling responses in the brain and propose glucocorticoid induced leucine zipper (GILZ) encoded by Tsc22d3, as a molecular link that connect all three pathways in the maintenance of CNS homeostasis as well as in the pathogenesis of neuroin fl ammation-神经变性。
男性和女性对抗原(包括无害抗原、自身抗原、肿瘤抗原、微生物抗原和疫苗抗原)的免疫反应有所不同。人们越来越关注免疫系统中生物性别差异的机制,大量文献指出性激素对免疫细胞功能有影响。性类固醇,包括雌激素、雄激素和孕激素,对免疫功能有重大影响。因此,随着衰老(例如青春期后或更年期过渡期)或怀孕而发生的性类固醇浓度的急剧变化会影响免疫反应和免疫相关疾病的发病机制。性类固醇对免疫的影响涉及配体的浓度以及基因组和非基因组受体的密度和分布,这些受体作为免疫细胞反应的转录调节因子,影响自身免疫、过敏、传染病、癌症和对疫苗的反应。下一个前沿将是利用性类固醇的作用来改善治疗效果。
摘要转化生长因子 β (TGF-β) 长期以来被认为与早期胚胎发育和器官形成、免疫监督、组织修复和成人体内平衡密切相关。TGF-β 在纤维化和癌症中的作用很复杂,有时甚至是矛盾的,根据疾病的阶段表现出抑制或促进作用。在病理条件下,过表达的 TGF-β 会导致上皮-间质转化 (EMT)、细胞外基质 (ECM) 沉积、癌症相关成纤维细胞 (CAF) 形成,从而导致纤维化疾病和癌症。鉴于 TGF-β 及其下游分子在纤维化和癌症进展中的关键作用,针对 TGF-β 信号传导的治疗似乎是一种有前途的策略。然而,由于潜在的全身细胞毒性,TGF-β 疗法的开发滞后。本文综述了TGF-β的生物学过程、其在纤维化和肿瘤发生中的双重作用以及TGF-β靶向治疗的临床应用。关键词:TGF-β,TGF-β信号通路,靶向治疗
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
on intrinsic and acquired resistance mechanisms which include increased efflux of chemotherapeutics (e.g., by ABC transporters), increased DNA repair, mutation or alteration of drug targets, epigenetic mechanisms such as epigenetic regulation of gene expression and/or of protein drug targets, induction of senescence, factors in the tumor microenvironment, and epithelial-to-mesenchymal transition [4,5]。为了克服这些抗性因素,除了鉴定新药物外,还必须对这些机制进行透彻的了解。自然衍生的吲哚化合物作为抗癌剂表现出很大的潜力,并且吲哚生物碱药物(例如长春蛋白和葡萄蛋白)自多年以来就可以治疗肿瘤疾病[6,7] [6,7]。基于天然铅吲哚衍生物星孢子蛋白[8-10]开发了基于吲哚酶的糖化酶抑制剂(批准用于转移性肾细胞癌的治疗)和enzastaurin。吲哚也是突出的饮食化合物,以及诸如芥末葡萄糖素,吲哚-3-carbinol(I3c)和3,3'-二烷基甲烷(dim)(dim)的3,3'-二烷基甲醇(dim)抗癌诱导症(以及对磷酸33的抗磷酸33)的活性(dim)的活性(dim)的3.-二烷基甲烷(dim),因子κB(NF-κB)信号传导[图1] [11-13]。很久以前,Cato The Elder建议卷心菜叶治疗癌性溃疡和统计数据,现在表明,人群随着十字花科蔬菜的消费量增加显示出较低的癌症事件[13-15]。天然吲哚葡萄糖醇分解为I3c,并在食用时在胃中形成昏暗。然而,DIM的生物利用度较差,并且在体内测试中通常需要制剂[11,16]。DIM的合成衍生物已通过各种合成方法制备[17,18]。几种昏暗的衍生物揭示了针对癌细胞的高活性[7,19]。在本综述中介绍了DIM及其合成衍生物的抗癌活性的当前状态,重点是癌症耐药性,肿瘤生长抑制以及有关其对信号通路和转录因子的影响的新见解。
亲爱的编辑,当在意外的医疗情况下需要新药的需求和新兴病原体的情况一样,药物重新利用是一种方便的选择。近年来,基于网络生物学的方法已证明优于基因。1 Here, we use an innovative methodology that combines mechanistic modeling of the signal transduction circuits related to SARS-CoV-2 infection (the COVID-19 disease map) with a machine-learning algorithm that learns potential causal interac- tions between proteins, already targets of drugs, and speci fi c signaling circuits in the COVID-19 disease map, to suggest potentially repurposable drugs.途径的机理模型提供了自然桥,从基因活性(转录)的变化到表型的变化(在细胞,组织或生物体的水平上)。实际上,人类信号通路的机理模型已成功地用于发现不同疾病背后的特定分子机制,以揭示药物的作用模式,并建议个性化治疗方法。然而,机械模型的最有趣的特性是它们可用于预测干预措施的后果,例如靶向药物的影响。2可用性19疾病图3可用于构建SARS-COV-2感染的现实机理模型以及宿主细胞中发生的所有下游功能后果。这些受影响的电路最终会触发细胞功能,其病毒的扰动会导致199症状或疾病标志。3此疾病图是一组信号转导电路,其中包含与病毒蛋白及其上游和下游连接相互作用的人类蛋白质(请参阅补充结果和补充表S1,共有277个来自49个KEGG途径的电路)。此处用于正确拟合定义电路功能的UNIPROT注释中的主要标志是:(1)宿主 - 病毒相互作用,(2)(2)炎症反应,(3)免疫活性,(4)抗病毒防御,(4)抗病毒防御,(5)内部局部症状,(5)内部局部情况,((6)复制,(6)复制和(7)ELOLTICES和(7)ELOTICS。由于疾病地图社区产生了新的生物学知识,该疾病图将动态更新。
简介 Wnt 信号转导协调各种生物学过程,如细胞增殖、分化、器官形成、组织再生和肿瘤发生 1 – 5。传统上,Wnt 信号转导分为 β -catenin 依赖性(经典,Wnt/β -catenin 通路)和 β -catenin 非依赖性(非经典,Wnt/平面细胞极性 [PCP] 和钙通路)信号转导 6,7。经典 Wnt 信号转导主要调节细胞增殖,非经典 Wnt 信号转导控制细胞极性和运动。然而,这种术语上的区别并不明确,并且有研究提出 β -catenin 依赖性和 β -catenin 非依赖性 Wnt 信号转导都参与肿瘤发生 8 ,对此提出了质疑。例如,APC 和 β -catenin 不仅参与细胞增殖,而且还与细胞间粘附有关 9。在这篇评论中,我们将讨论抑制 Wnt 信号传导的持续努力,并提出潜在的方法
摘要................. ... ................. ... 488 A. 经典 Janus 激酶/信号转导和转录激活因子 3 信号传导 ..................................488 1. Janus 激酶........................................................................................................................................................488 2. 信号转导和转录激活因子蛋白.................................................................................................................................. . . . . . . . . 489 3. 典型 Janus 激酶/信号转导和转录激活因子 3 信号的负向调控. . . . . . . . . . . . . . . . . . . . . 490 4. 信号转导和转录激活因子 3 的翻译后修饰. . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 1. 磷酸酪氨酸 705 – 未磷酸化的信号转导子和转录激活子3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 2. 线粒体信号转导子和转录激活子3. . . . . . . . . . . . . . . . . . . . 493 3. 血小板中的支架功能. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。. . . . . . . . . . . . 494 A. Janus 激酶/信号转导和转录激活因子 3 在造血和免疫细胞功能中的作用. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. ... .................................................................................................................................................................. 499 8. CD81T 细胞.................................................................................................................................................................... .... 499 8. CD8 1 T 细胞. .... 499 8. CD8 1 T 细胞. ...
摘要 环磷酸腺苷 (cAMP) 是第一个发现的第二信使,在细胞信号转导中起着关键作用,调节许多生理和病理过程。cAMP 可以调节各种靶基因的转录,主要通过蛋白激酶 A (PKA) 及其下游效应物如 cAMP 反应元件结合蛋白 (CREB)。此外,PKA 可以磷酸化许多激酶,如 Raf、GSK3 和 FAK。异常的 cAMP-PKA 信号转导与各种类型的人类肿瘤有关。特别是,cAMP 信号转导可能具有肿瘤抑制和肿瘤促进作用,具体取决于肿瘤类型和环境。cAMP-PKA 信号转导可以调节癌细胞的生长、迁移、侵袭和代谢。本综述重点介绍了 cAMP-PKA-CREB 信号在肿瘤发生中的重要作用。还讨论了针对该途径进行癌症治疗的潜在策略。关键词:cAMP、PKA、CREB、癌症
简介心肌病 (CM) 是一组异质性心肌疾病,可分为肥厚性 CM (HCM)、扩张性 CM (DCM) 和限制性 CM (RCM) (1–4)。已鉴定出 CM 的遗传因素,且有 100 多个基因与不同类型的 CM 相关 (5, 6)。已建立动物模型并用于发现关键信号通路和治疗策略。已鉴定出至少 7 条具有治疗潜力的 CM 信号通路,包括丝裂原活化蛋白激酶 (MAPK) 信号转导、mTOR 信号转导、β -肾上腺素能受体信号转导、磷酸二酯酶 5 (PDE5) 信号转导、组蛋白去乙酰化酶 (HDAC) 信号转导、Ca 2+ /钙调蛋白依赖性激酶 II 信号转导和钙调磷酸酶-活化 T 细胞核因子 (Cn-NFAT) 信号通路 (7–9)。例如,mTOR 是一种丝氨酸/苏氨酸蛋白激酶,在调节心肌细胞蛋白质稳态方面起着关键作用 (10–12);通过药理学或遗传学方法部分抑制 mTOR 可对几种类型的心肌病产生心脏保护作用,包括 lamp2 相关 HCM (13)、bag3 相关和层蛋白 A/C 相关 DCM (14, 15) 以及贫血和阿霉素诱发的心肌病 (DIC) (16)。相反,已发现 MAPK 几乎在每种应激和激动剂诱发的肥大刺激下都会激活,并以独特的方式调节心脏离心和向心生长之间的平衡 (17, 18)。 MAPK 的激活会导致离心性肥大并促进肌细胞延长,而抑制细胞外信号调节激酶 (ERK) 通路会减弱对压力超负荷的肥大反应 (19)。MYH7,也称为 β - 肌球蛋白重链,是第一个被确定的 CM 致病基因,后来被确定为约 18% 的 HCM 病例的病因 (20–22)。在人类中,MYH7 与 MYH6 串联位于 14 号染色体上,MYH7 是位于 MYH6 上游的主要成体亚型。在小鼠中,Myh7 和 Myh6 也串联位于 14 号染色体上;然而,上游的 Myh7 基因