图 3.7:模型工作流程 ............................................................................................................................................. 27 图 4.1:环境包含:2 台计算机、屏幕、打印机和打印在它们上方的二维码 ............................................................................................. 31 图 4.2:(A)上图显示第二台计算机的文件,其中包含 IP 地址 192.186.1.3 和 ...... 32 图 4.3:用户佩戴 VR 眼镜 ............................................................................................................................. 33 图 4.4:眼镜包含一个可放置移动设备的轨道 ............................................................................................................. 33 图 4.5:显示增强现实UI ................................................................................ 34 图 4.6:文件类型和图标 .......................................................................................................................... 34 图 4.7:通过手指编号,我们可以检查手是闭合的还是张开的 ................................................................................ 35 图 4.8:我们的系统检测到闭合的手和姿势,在顶部我们可以看到手指编号和
解密基因如何解释细胞核内转录因子(TF)浓度的信息仍然是基因调节中的一个基本问题。最近的进步揭示了TF分子的异质分布,对精确解码浓度信号提出了挑战。使用荧光果蝇胚胎中荧光标记的TF双子体的高分辨率单细胞成像,我们表明双子体簇中的双聚体积累保留了母体双聚体梯度的空间信息。这些集群通过强度,大小和频率提供精确的空间提示。我们进一步发现,双子靶基因以增强子结合亲和力依赖性方式与这些簇共定位。我们的建模表明,聚类为全球核浓度提供了更快的传感机制,而不是通过简单增强子检测到的自由扩散的TF分子。
本文介绍了一种新的量子协议,旨在同时将信息从一个源传输到多个接收者。所提出的协议基于纠缠现象,是完全分布式的,并且可证明是信息理论上安全的。许多现有的量子协议保证了两方之间的安全信息通信,但在源必须将信息传输给两方或多方的情况下,这些协议不适合推广,因此在这种情况下必须连续应用两次或多次。新协议的主要新颖之处在于它的可扩展性和通用性,适用于涉及一方必须同时向任意数量的空间分布方传达不同消息的情况。这是通过采用特殊方式在系统的纠缠态中对传输的信息进行编码来实现的,这是与以前的协议相比的显着特征之一。当信息经纪人(例如 Alice)必须一次性向其位于不同地理位置的代理人传达不同的秘密消息时,此协议可以证明是权宜之计。由于该协议涉及 𝑛 方之间的通信,并且依赖于 | 𝐺𝐻𝑍 𝑛 ⟩ 元组,因此与类似的密码协议相比,该协议相对复杂,我们提供了广泛而详细的安全性分析,以证明该协议在信息论上是安全的。最后,在实现方面,该协议的普遍特点是其统一性和简单性,因为它只需要 CNOT 和 Hadamard 门,并且所有信息接收者的本地量子电路都是相同的。
屏幕 ................................................................................................................................................................ 25 图 3.7:模型工作流程 .......................................................................................................................................... 27 图 4.1:环境包含:2 台计算机、屏幕、打印机和打印在它们上方的二维码 ............................................................................. 31 图 4.2:(A)顶部图显示第二台计算机的文件,其中包含 IP 地址 192.186.1.3 和 ...... 32 图 4.3:用户佩戴 VR 眼镜 ............................................................................................................................. 33 图 4.4:眼镜包含一个可放置移动设备的轨道 ............................................................................................................. 33 图 4.5:显示增强用户界面的实际模拟 ................................................................................................................ 34 图 4.6:文件类型和图标 ................................................................................................................................ 34 图 4.7:通过手指编号,我们可以检查手是闭合的还是张开的 ................................................................................ 35 图 4.8:我们的系统检测到闭合的手和姿势,在顶部我们可以看到手指编号和
最近,我们目睹了量子信息科学的快速发展,这得益于量子技术革命,它使许多理论思想得以通过实验实现。对量子概念的哲学分析比以往任何时候都更加重要,这些概念在量子理论诞生之初就被引入,但从未达成共识。在这里,我分析了可以说是最奇怪的量子信息协议:量子隐形传态,即使用极少的资源传输量子态。当隐形传态论文 (Bennett et al. 1993) 的合著者 Asher Peres 被记者问到量子隐形传态是否可以像传送身体一样传送灵魂时,他回答说:“不,不是身体,只是灵魂。”隐形传态协议中传送了什么以及如何传送,仍然是有争议的问题。量子粒子的不可区分性使得 Saunders (2006) 提出了这样的问题:“量子粒子是物体吗?”但正是这种不可区分性使得隐形传态成为可能:在隐形传态协议中,粒子(“身体”)不会移动。一个地方的粒子(“灵魂”)的量子态会转移到另一个地方的粒子。如今,人们不会从一个城市被隐形传态到另一个城市,而且可以肯定地说,这种情况永远不会发生,但隐形传态协议已成为量子信息的基石之一。隐形传态的数学原理没有争议,但我们仍需要了解这一过程的矛盾特征(见 Vaidman 1994a):如何通过经典信道发送少量信息来发送需要大量信息的量子态:
摘要:本文研究一套基于业务流程的竞争情报系统,旨在通过高效的数据采集、处理和分析,帮助企业在激烈的市场环境中获取有价值的战略信息。随着互联网的快速发展,企业面临的信息量急剧增加,如何筛选出具有实用价值的信息成为一大难题。为此,本文深入分析企业的具体需求,提出了系统架构的三个模块:情报采集、情报处理和情报服务。情报采集通过关键字搜索、URL抓取实现初步的信息收集,并结合文本处理技术对数据进行清洗、结构化,提高数据的准确性。在此基础上,本文提出了信息转换标准,并采用机器学习中的SVM分类算法和K-means聚类算法对文本数据进行精细分类和非监督聚类,从而优化信息管理和分发。该系统能有效提高信息收集利用效率,帮助管理者在复杂的市场环境中做出更准确的决策,具有重要的应用价值。
由于广泛使用先进的通信技术和无线传感器网络,例如医疗互联网(IOMT),健康信息交换技术(HIET),医疗保健互联网事物(IOHT)和Health IOT(HIOT),医疗保健行业已经进行了转变。这些技术导致医疗数据(尤其是医学成像数据)在各种无线通信渠道上的传输增加。但是,通过不安全的互联网渠道(如互联网和通信网络)(如5G)传输高质量的彩色医学图像,带来了可能威胁患者数据隐私的重大安全风险。此外,此过程还可能负担通信通道的有限带宽,从而导致数据传输延迟。为了解决医疗保健数据中的安全问题,研究人员将大量关注放在医疗图像加密上,作为保护患者数据的一种手段。本文提出了一种彩色图像加密方案,该方案集成了多个加密技术,包括替代量子随机步行,受控的魔方立方体变换,以及椭圆曲线加密系统与山地密码(ECCHC)的集成。所提出的方案通过分层固定尺寸的平面来创建常规立方体,从而将各种明文图像划分。每个平面沿逆时针方向旋转,然后进行行,柱和面部交换,然后进行DNA编码。将用DNA编码的图像立方与混沌立方通过DNA结合在一起,并选择了几个随机DNA序列以进行DNA突变。进行DNA突变后,然后使用DNA解码编码的立方体。提出的方法具有通过使用无限大的立方体加密无限尺寸和数字的2D图像的理论能力。已通过各种实验模拟和网络攻击分析对所提出的图像加密方案进行了严格测试,这显示了所提出的加密方案的效率和可靠性。