卡内基机载观测站 (CAO) 的建立是为了满足宏观测量的需求,以揭示地球生态系统的结构、功能和有机组成。2011 年,我们完成并启动了 CAO-2 下一代机载分类制图系统 (AToMS),其中包括高保真可见光至短波红外 (VSWIR) 成像光谱仪 (380 – 2510 nm)、双激光波形光检测和测距 (LiDAR) 扫描仪以及高空间分辨率可见光至近红外 (VNIR) 成像光谱仪 (365 – 1052 nm)。在这里,我们描述了如何使用硬件和软件协同对准和处理技术融合来自这些传感器的多个数据流。通过这些数据流,我们定量地证明了精确的数据融合极大地提高了从遥感中获得的生态信息的维度。我们比较了两个截然不同场景的数据维度——斯坦福大学的建筑环境和亚马逊低地热带森林。主成分分析显示,斯坦福案例中有 336 个维度(自由度),亚马逊案例中有 218 个维度。亚马逊案例呈现的遥感数据维度可能是有史以来森林生态系统的最高水平。模拟数据流错位使有效信息内容减少了 48%,凸显了在进行多传感器
汉密尔顿量 H 的生成函数定义为 F ( t ) = ⟨ e − itH ⟩ ,其中 t 是时间,期望值取自给定的初始量子态。此函数可以访问不同阶数 K 的汉密尔顿量 ⟨ HK ⟩ 的不同矩。F ( t ) 的实部和虚部可以在量子计算机上分别使用一个额外的辅助量子位来评估,该辅助量子位对时间 t 的每个值都有一组测量值。量子比特的低成本使其在量子比特数量有限的近期非常有吸引力。假设可以使用量子设备精确计算生成函数,我们将展示如何在经典计算机上后验地使用此函数的信息内容来解决量子多体问题。说明了几种经典的后处理方法,旨在预测近似基态或激发态能量和/或近似长期演化。这种后处理可以使用基于 Krylov 空间的方法和/或与虚时间演化密切相关的 t 展开方法来实现。使用配对和费米-哈伯德模型在多体相互作用系统中说明了混合量子-经典计算。
其中,k B 为玻尔兹曼常数,X 为相关相空间体积,是微观状态数量的量度。注意,上述定义中需要使用对数,以使玻尔兹曼统计熵具有与热力学熵相同的加性。后来,克劳德·香农发现,可以使用与玻尔兹曼公式类似的公式(尽管符号相反)来量化信号的信息内容。继香农之后,人们通常将熵等同于系统的(缺乏)信息或“无序”。由于信息是一个渗透到许多自然科学中的概念,熵的概念很快传播到其他领域,例如生物学和遗传学。约翰·冯·诺依曼将玻尔兹曼熵推广到量子物理学。这实际上不仅仅是一种概括。事实上,方程 (1) 有点问题,因为 X 具有相空间体积的维度,而对数的参数应该是无量纲的——更不用说 SB 可以变为负值。但考虑到量子力学引入了由普朗克常数 h 给出的最小作用量,玻尔兹曼公式可以改写为:SB = k ln( X / hd )(其中 d 是系统的维数),只要 X hd ,它就始终为非负,并且只有当等号成立时它才为零。就离散量子
近年来,光学遥感系统和方法已成为控制地球表面物体状态和事件的基本工具。为了监测自然现象后果和地球表面状态,需要使用高空间分辨率的卫星:Pleiades-1A、Pleiades-1B、TripleSat Constellation (DMC-3)、DubaiSat-2、Jilin-1、WorldView-1、2、3、RapidEye、Cartosat -3 等。这些卫星可以以数字方式获取目标局部区域的数百幅图像。这种多通道数据的分析是一项非常困难的任务,归结为强调特定物体、获取其特征和相对位置。安装在卫星上的遥感设备的典型数据集包括:多光谱(多通道)图像和全色图像(PAN)。全色图像的空间分辨率通常高于多光谱图像,这大大增加了物体识别的复杂性并对所使用的处理方法施加了限制。对于原始数据的信息内容改进,现有的图像处理方法存在一系列缺点,其中最主要的是颜色失真 [1-4]。这项工作的目的是提高原始多通道图像的空间分辨率,尽量减少颜色失真。从 WorldView-2 卫星拍摄的图像被用作输入数据。为了确定所提出的信息技术的有效性
摘要:评估种质的遗传多样性对于声音种质管理及其在育种计划中的成功利用至关重要。这项研究旨在估计车前草配件之间的遗传多样性,并使用简单序列重复(SSR)标记在基因型之间建立关系。SSR标记物在20个车前草附属物中扩增了21个等位基因,每个位点3.50等位基因和主要等位基因频率(平均值±SD,0.80±0.34)。多态信息内容(PIC)和香农的多样性指数分别为0.054至0.919和0.000至1.864。分子方差分析(AMOVA)表明,种群中基因型之间发生了88%的遗传变异,人群之间观察到最小的变异。这会导致区分种群时的NEI遗传距离和FST值可以忽略不计。基因流速明确证明了采用共同主导标记的功效,正如主坐标分析(PCOA)和树状图所证明的那样。这项研究表明,在车前草种群中的20个车前草配件之间存在明显的遗传差异,并建立了新的集群群体,为未来在育种计划中使用提供了宝贵的见解。
人们已经对自然界有了如此多的了解,以至于科学的信息内容已经变得非常庞大。这一点众所周知,科学教育者和科学教科书作者开始相信,他们必须在可用的时间内尽可能多地传递事实信息。教科书越来越厚,课程越来越集中;学生需要记住和学习越来越多的材料。获取科学事实和信息优先于学习科学方法和概念。不可避免地,传递正确调查、理解和评估所有这些科学数据的方法(即批判性思维)这一基本伴随任务被遗忘了。这种情况在中小学教育中尤为严重,在过去几十年里,与其他工业化国家相比,我国学生的数学和科学能力明显下降。研究表明,我们的学生在数学和科学方面的能力一开始与其他国家的学生处于同一水平,但随着他们在我们的教育体系中不断进步,他们的能力逐渐下降。到高中毕业时,美国学生在数学和科学成绩方面在工业化国家中排名最低。在大学入门科学教育中,我们继承了这些学生,必须处理他们在科学和批判性思维方面的不足。
作为一名盲目的研究人员,我完全依靠声音来分析我的数据并执行我的研究计划。到此为止,我活跃于一个协作中,该协作正在探索数据SONIFILITION(将数据转换为声音)以增强,验证和加速发现。我们计划的范围不仅限于使盲人和视觉障碍的研究人员能够为以前无法访问的研究领域做出贡献。相反,我们还考虑使用新的多模式方法,这些方法利用声音的特性来解决现代天体物理学趋势所带来的主流挑战。使用“现实生活”示例,我描述了我们如何显示时间序列数据,光谱和多维数据集,这些数据集映射到各种声音特征,例如音高,振幅,波形,波形,脉搏重复速率,音调质量,扭曲质量和失真和失真和失真和噪声,以提供有关测量不确定性的附加信息。我讨论了数据SONIFIRATION在高红移星系研究中的应用,以及我们协调的多波长观察计划以检测和跟进快速瞬态事件。最后,我概述了涉及触摸屏和触控板方法的当前研究方向,以检查散点图(非线性)数据表示,基于形状的识别以及使用合并的加权谐波来呈现多维数据集中的信息内容。
摘要:近年来,可穿戴式脑电图 (EEG) 在临床和研究之外的广阔应用前景推动下越来越受欢迎。连续脑电图的普遍应用需要不显眼的外形,以便终端用户轻松接受。在此过程中,可穿戴式脑电图系统已从整个头皮转移到前额,最近又转移到耳朵。本研究的目的是证明新兴的耳部脑电图提供与现有的前额脑电图相似的阻抗和信号特性。在阻抗分析后,使用装有三个定制电极和一个前额电极 (Fpx) 的通用耳机从十名健康受试者获取了睁眼和闭眼阿尔法范式的脑电图数据。入耳式电极阻抗的受试者间变异性在 10 Hz 时为 20 k Ω 至 25 k Ω。信号质量相当,入耳式电极的 SNR 为 6,前额电极的 SNR 为 8。所有入耳式电极在睁眼状态下的 Alpha 衰减都很明显,并且遵循前额电极功率谱密度图的结构,入耳位置 ELE(左耳上)和 ERE(右耳上)与前额位置 Fp1 和 Fp2 之间的 Pearson 相关系数分别为 0.92。结果表明,就阻抗、信号特性和信息内容而言,入耳式 EEG 是已建立的前额 EEG 的非侵入式替代方案。
摘要。半干旱地区对全球碳汇的年际变异性影响。南半球非洲的半干旱和干旱地区。在南半球只有稀疏的原位覆盖范围。这导致了这些区域的基于测量的碳量估计值的确定性。此外,动态的全球植被模型(DGVM)在半干旱地区显示出较大的不一致。卫星CO 2测量值提供了有关南非碳循环的空间广泛和独立的信息来源。我们检查了观察到卫星(GOSAT)CO 2浓度测量的温室气体,从2009年至2018年在南部非洲。我们推断出使用TM5-4DVAR大气反转系统的GOSAT测量结果一致的CO 2土地 - 大气。我们发现了在卫星观测值与仅在现场测量的情况下发生的大气反转之间的系统差异。这表明后者中有限的测量信息内容。我们将基于GOSAT的漏液和太阳能诱导的荧光(SIF;光合作用的代理)作为大气约束,以将TrendyV9 Ensemble的DGVMS呈现出表现出的dgvvs,这些dgvms呈现出相应的流量。选定的DGVM允许研究驱动南部非洲碳循环的植被过程。这样做,我们基于卫星的过程分析了南部草原的Pin-Point光合作用吸收,成为南部际变化的主要驱动力
前言 航空运输业在世界经济活动中发挥着重要作用,必须在全球、地区和地方层面维护安全、高效和环境可持续的空中航行系统。为了实现这一目标,需要实施空中交通管理 (ATM) 系统,以最大限度地利用技术进步带来的增强功能。未来的 ATM 需要一个具有大量信息内容的协作环境。本手册旨在提出将于 2025 年实施的“飞行和流量——协作环境信息”(FF-ICE) 的概念。本手册的制定特别注重实现《全球空中交通管理运行概念》(Doc 9854) 中概述的愿景并满足《空中交通管理系统要求手册》(Doc 9882) 中概述的要求。FF-ICE 概念说明了与 ATM 运行组件相关的流量管理、飞行计划和轨迹管理信息。本手册将被 ATM 界用作制定国际民航组织标准和建议措施 (SARP) 的基础,以确保 FF-ICE 概念能够在全球范围内以一致的方式实施。 未来发展 欢迎所有参与 FF-ICE 开发和实施的各方就本手册提出意见。这些意见应寄送至: 国际民用航空组织秘书长 999 University Street Montréal, Quebec, Canada H3C 5H7 电子邮件:icaohq@icao.int _____________________