在微结构射频阱阵列中移动捕获离子量子比特为实现可扩展量子处理节点提供了一条途径。建立这样的节点,提供足够的功能来代表新兴量子技术(例如量子计算机或量子中继器)的构建块,仍然是一项艰巨的技术挑战。在这篇评论中,作者对这种架构进行了全面介绍,包括相关组件、它们的特性及其对整个系统性能的影响。作者提出了一种基于均匀线性分段多层阱的硬件架构,由定制的快速多通道任意波形发生器控制。后者允许以足够的速度和质量进行一组不同的离子穿梭操作。作者描述了微结构离子阱、波形发生器和附加电路的相关参数和性能规格,以及用于验证系统性能的合适测量方案。此外,还详细描述并表征了动态量子比特寄存器重新配置的一组不同的基本穿梭操作。
| ax⟩= a | ψ⟩。此外,任何两个状态| ψ⟩,可以通过形成叠加|将X x组合成新状态。 ψ +x⟩= | ψ⟩ + | x⟩。矢量空间是希尔伯特空间,即,它配备了标量产品,该产品与复杂的数字⟨|相关联。 x x到任何一对状态| ψ⟩, x⟩。标量产品是正定的,⟨ψ| ψ⟩> 0 for | ψ⟩̸= 0 | ψ⟩和完整填充⟨| x⟩=⟨X| ψ⟩ *。此外,它在第二个参数中是线性的,但是在第一个参数(即⟨ψ|)中有线性。 ah⟩=a⟨ψ| x⟩,⟨ape| x⟩=α∗⟨月| x⟩,⟨ψ + ϕ | x⟩=⟨⟨| x⟩ +⟨ϕ | x⟩,⟨ψ| ϕ +x⟩=⟨ψ| ϕ +⟨ψ| x⟩。正式,标量产品可以解释为产品⟨ψ| ·向量之间的x⟩| x⟩和实体⟨ψ| ,这形成了双向量空间。它们代表标量产品中的左雕像,因此也是偶联的线性:⟨aph + bx | =α∗⟨| | + b ∗⟨x| 。此处介绍的特定符号是所谓的Dirac符号。在这种情况下,双向量也称为胸罩,普通向量称为ket,暗示了标量产品中的⟨ψ|中的事实。 x⟩他们形成一个支架(胸罩)。我们致电|| ψ|| = p
纠缠的另一个度量是负性。负性没有操作解释(或至少没有标准解释),但与以前的度量不同,它很容易计算。部分转置 ρ TA 是一个正但不完全正的映射。因此它不是物理运算,但我们可以用数学方法来完成。具体而言,由于它是正的,当你将部分转置应用于张量积状态时,你会得到一个正状态。但是,由于它不是完全正的,如果你将它应用于某些纠缠态,你会得到具有“密度矩阵”负特征值的“状态”。负特征值的总和就是状态的负性。它是纠缠单调的,而且它是可加的并且易于计算。然而不幸的是,负性并不忠实。有些状态具有 0 负性但不可分离。实际上,这样的状态一定是束缚纠缠态(这就是我们知道束缚纠缠态存在的原因),因为成功的蒸馏过程会产生最大纠缠态,其负性不为零。由于负性在 LOCC 下无法增加,因此不可能实现这样的协议。
准确的信息处理在技术和自然界中都是至关重要的。为了实现它,任何信息处理系统都需要初始资源供应远离热平衡。在这里,我们建立了可以通过给定数量的非平衡资源来实现准确性的基本限制。该限制适用于任意信息处理任务和任意信息处理系统受量子力学定律的影响。它很容易计算,并且用熵数量表示,我们将其命名为反向熵,与所考虑的信息处理任务的时间逆转相关。对于所有确定性的经典计算及其所有量子延伸都可以达到极限。作为一种应用程序,我们建立了非quilibrium和准确性之间的最佳权衡,用于存储,传输,克隆和擦除信息的基本任务。我们的结果设定了接近最终效率限制的新设备设计的目标,并提供了一个框架,以证明量子设备的热力学优势比其经典配料。
[1] Fujimoto, K., Hayashi, K., Katayama, R., Lee, S., Liang, Z., Yoshida, W., Ishii S. (2022).深层
然而,电信和交通运输的故事远比出行替代复杂得多。电信包括互联网、手机、机器之间的数据交换等等。例如,汽车行业现在正转向使用互联网自动传达车辆维护状态并使其可在线获取。大约十年内,万维网可能通过语音命令无处不在。全天候高带宽连接意味着电视将通过互联网传送。电信对交通运输的影响可以大致分为 (a) 交通需求特征的变化(包括出行量、出行时间、目的地、路线和模式),以及 (b) 交通运输本身的性能和用户特征的变化(包括安全性、速度和可靠性)。对于交通政策分析师来说,电信作为出行的替代品通常是电信与交通互动中最有趣的方面。五种不同的机制在起作用:
1. 引言 近年来,全球范围内对量子计算机的科学研究和金融投资急剧增加,量子计算机在理论上可以比任何传统计算系统更快地解决特定问题,而传统计算系统无法做到这一点。随着科学技术的进步,人们发明了新的方法来更新当前的技术和计算系统,从而实现技术突破。从 1832 年查尔斯·巴贝奇 (Charles Babbage) 的思想结晶到 1941 年德国工程师康拉德·楚泽 (Konrad Zuse) 发明的第一台可编程计算机,计算机领域多年来取得了显著的进步。虽然现代计算机比早期的计算机速度更快、更紧凑,但它们的根本原理仍然是相同的,即操纵和解释二进制位的编码,将其转化为对人类有用的计算结果。然而,1900 年,尼尔斯·玻尔 (Niels Bohr) 和马克斯·普朗克 (Max Planck) 提出了量子理论,该理论将彻底改变计算世界并催生量子计算。量子计算是一个多学科领域,它利用量子力学原理来解决传统计算机难以处理的问题。量子计算机和传统计算机的主要区别在于它们的基本运行方式——量子计算机利用量子力学原理有效地解决问题,而传统计算机则依靠经典物理学原理来处理信息。量子计算机使用量子比特(经典比特的量子对应物)来运行,并且遵循与使用二进制系统的传统计算机不同的规则集。与仅表示 0 或 1 的传统比特不同,量子比特可以存在于状态叠加中,从而允许并行处理和复杂计算。量子计算机的存在不仅会成倍地加快计算速度,而且还将使我们能够以更高的准确度和精度更好地理解基本量子现象。所有这些都使量子计算机能够彻底改变信息处理,因为它们能够解决传统计算机无法在多项式时间内解决的问题,例如加密、整数分解和优化。
本实验将让您在双自旋系统上执行一系列简单的量子计算,演示一和两个量子位量子逻辑门,以及实现 Deutsch-Jozsa 量子算法的电路。您将使用 NMR 技术来操纵氯仿分子中质子和碳核的状态,测量整体核磁化。您应该熟悉 Matlab 才能成功完成此实验!此外,您应该已经完成初级实验室实验 12:脉冲 NMR,并了解 NMR 的基本物理原理。您将测量描述氯仿质子和碳核自旋之间电子介导相互作用的耦合常数;受控非门的经典输入输出真值表;Deutsch-Jozsa 量子算法的数值输出;以及可选的 Grover 量子搜索算法的输出和振荡行为。