摘要 我们证明了非相对论量子力学的公式可以从一个扩展的最小作用量原理中推导出来。这个原理可以看作是经典力学最小作用量原理的扩展,因为它考虑了两个假设。首先,普朗克常数定义了一个物理系统在其动力学过程中为可观测所需表现出的最小作用量。其次,沿经典轨迹存在恒定的真空涨落。我们引入了一种新方法来定义信息度量来测量由于真空涨落引起的额外可观测性,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够恢复位置表象中的基本量子公式,包括不确定性关系和薛定谔方程。在动量表象中,可以应用同样的方法得到自由粒子的薛定谔方程,而对于具有外部势的粒子仍需要进一步研究。此外,该原理在两个方面带来了新的结果。在概念层面,我们发现真空涨落的信息度量是玻姆量子势的起源。尽管二分系统的玻姆势不可分,但底层的真空涨落是局部的。因此,玻姆势的不可分性并不能证明两个子系统之间存在非局部因果关系。在数学层面,使用更一般的相对熵定义量化真空涨落的信息度量会得到一个取决于相对熵阶数的广义薛定谔方程。扩展的最小作用原理是一种新的数学工具。它可以应用于推导其他量子形式,例如量子标量场论。
摘要:新的分区逻辑与通常的布尔子集逻辑(通常仅在命题逻辑的特殊情况下出现)是双重的,因为分区和子集是范畴论的对偶。逻辑熵的新信息度量是分区的规范化定量版本。解释量子力学 (QM) 的新方法表明 QM 的数学(而不是物理)是分区数学的线性化希尔伯特空间版本。或者,反过来说,分区数学是 QM 数学的骨架版本。从逻辑到逻辑信息再到量子理论的整个过程中,关键概念是区别与无区别、确定性与不确定性或可区分性与不可区分性。分区的区别是来自底层集合的有序元素对,它们位于分区的不同块中,逻辑熵最初定义为区别的规范化数量。确定性和可区分性的同源概念贯穿于整个量子力学的数学,例如,在关键的非经典叠加概念(=本体不确定性)中,以及在费曼规则中,用于添加振幅(不可区分的选择)与添加概率(可区分的选择)。
陈述了这两点,我们最后可以注意到,获得的 Fisher 信息度量 ⟨· , ·⟩ FIM 횺 随 횺 平滑变化。这使得从统计模型过渡到黎曼几何成为可能:微分几何的一个分支,研究具有光滑局部内积(称为黎曼度量)的光滑流形。这种框架确实适用于参数统计模型,因为它使我们能够研究配备 Fisher 信息度量的参数空间的几何形状。由此产生的黎曼几何通常称为 Fisher-Rao 信息几何。回到我们的中心例子,我们已经介绍了足够多的元素来明确本章的标题“CES 分布的 Fisher-Rao 几何”更准确地说是“由中心圆形复椭圆对称分布的 Fisher 信息度量引起的 Hermitian 正定矩阵(协方差矩阵)的黎曼几何”,这将在下一节中研究。
摘要 最近证明了非相对论量子公式可以从扩展的最小作用量原理 Yang (2023)。在本文中,我们将该原理应用于大质量标量场,并推导出标量场的波函数薛定谔方程。该原理通过考虑两个假设扩展了经典场论中的最小作用量原理。首先,普朗克常数定义了场需要表现出可观测的最小作用量。其次,存在恒定的随机场涨落。引入一种新方法来定义信息度量来衡量由于场涨落而产生的额外可观测信息,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够优雅地推导出场涨落的跃迁概率、不确定关系和波函数的薛定谔方程。此外,通过使用相对熵的一般定义来定义场涨落的信息度量,我们得到了依赖于相对熵阶数的波函数广义薛定谔方程。我们的结果表明,扩展的最小作用原理既可用于推导非相对论量子力学,也可用于推导相对论量子标量场理论。我们期望它可以进一步用于推导非标量场的量子理论。
量子信息主要从von Neumann熵和相关数量[1,2]来理解。由于典型的量子现象,例如纠缠等量子,量子信息度量(例如有条件的von Neumann熵和互助的von Neumann信息),即填充了良好的潜在概率分布。尽管如此,尽管它们有些神秘的概念上的基础,但这些数量已被证明可用于重新构架和阐明量子信息的各个方面。经典信息度量所满足的许多关系都反映出它们的量子类似物[1-3],有时非常明显,就像在强大的亚添加性的情况下一样[4]。在本文中,我们定义并研究了补充标准量的新形式的量子信息。我们方法中的关键成分是[5,6]中首先研究的有条件概率分布,该分布为所描述的信息类型提供了基础图片。特别是,我们能够在开放量子系统的上下文中提供信息流的描述,这些量子系统的动力学进化被线性,完全积极的,痕迹的(CPTP)映射良好,而没有任何明确吸引更大的Hilbert Space或辅助系统。我们表明,量子信息理论的某些标准结果从我们的角度自然而然地出现。第2节提供了一些有关经典和量子信息的相关背景。在第3节中,我们从量子条件概率方面定义了新的量子条件熵和量子相互信息的新形式,并且布里层描述了对这些数量的动态解释。在第4节中,我们使用上一节的结果来分析熵增长(在香农的意义上)的过程,并提供了von Neumann熵和量子数据处理的新证明。我们证明我们的量子数据处理不平等提供了自然的解释
这项工作描述了一个理论框架的原则性设计,从而通过压缩来实现有限字符串的有限多组的快速准确的算法信息度量。我们方法的一个独特特征是操纵理论本身的实体和数量的重复,明确表示:压缩字符串,模型,速率延伸状态,最小的足够模型,关节和相对复杂性。这样做,一种称为Parselet的可编程的,可编程的递归数据结构本质上提供了字符串的建模,作为来自编码常规部分的有限字符串集的参数化实例的串联。这支持了这项工作的另一个独特特征,这是Occam剃须刀之外的Epicurus原理的天然实施例,以便为数据生成最重要和最明显的明确模型。该模型是通过最小变化的原理来迭代发展的,以达到所谓的最小数据模型。parselets也可用于计算有关数据的任何任意假设。提出了一个无损,限制,以压缩表示的表示,该表示可以立即重复使用磁盘上存储的昂贵计算,以便将其快速合并为我们的核心例程,以获取信息计算。进行了两种信息度量:一个是确切的,因为它纯粹是组合,而另一个可能会产生轻微的数值不准确性,因为它是最小模型的Kolmogorov复杂性的近似值。信息对称性在位级别执行。尽可能,将Parselets与实际数据上的现成压缩机进行比较。其他一些应用程序只是由Parselets启用。
实现信息处理任务的抽象最佳速率通常以正规信息度量来表征。在许多量子任务的情况下,我们不知道如何计算此类数量。在这里,我们利用最近引入的D#中的对称性,以便在各种正规化数量上获得半有限编程范围的层次结构。作为应用程序,我们提供了一个一般程序,以在正规化的叶ume频道差异以及经典能力和量子通道的两向辅助量子能力上给出有效的界限。特别是,我们可以轻微改善振幅阻尼通道的能力。我们还证明,对于固定的输入和输出尺寸,可以将任何两个量子通道之间的正则夹层r´enyi差异近似至1 /ϵ中多项式的及时time。
本专著使用克劳德·香农 (Claude Shannon) 等人开发的信息理论来分析会计。在以下两种情况下可以推导出三向框架等价性:(i) 当状态可观测时;(ii) 当状态不可观测且只有信号可观测时,信号报告的状态有误。该等价性建立了会计数字、公司回报率和公司可用信息量的相等性,其中香农熵是信息度量。推导状态可观测等价性的主要假设是恒定的相对风险规避偏好、无套利价格和几何平均会计估值。状态不可观测性使用量子公理建模,因此使用量子概率;状态不可观测的方式与量子对象不可观测的方式相同。状态可观测等价性被视为状态不可观测等价性的特例。
在经典测量中,观察通过揭示系统被认为是预先存在的、独立于观察的属性来消除我们对状态的无知。香农信息是量化经典系统所携带信息量的理想度量。它也是我们对经典系统属性的无知的自然度量。然而,对于量子测量,情况则大不相同,因为不能说量子测量揭示了量子系统的预先存在的属性。因此,香农熵在量子物理学中可以被认为是概念上的不足。布鲁克纳和泽林格引入了一个量作为总信息的新度量,该量是通过对一组完整的相互补充的测量中的单个测量求和而获得的[1,2]。这种量子信息度量考虑到在测量之前已知的量子系统的唯一特征是各种事件发生的概率。这个量可以表示为