摘要 — 涉及检查和着陆任务的无人机 (UAV) 多任务任务对于新手飞行员来说具有挑战性,因为与深度感知和控制界面相关的困难。我们提出了一个共享自主系统以及补充信息显示,以帮助飞行员在没有任何飞行员培训的情况下成功完成多任务任务。我们的方法包括三个模块:(1)将视觉信息编码到潜在表示上的感知模块,(2)增强飞行员动作的策略模块,以及(3)向飞行员提供额外信息的信息增强模块。在用户研究 (n = 29) 中,策略模块在模拟中使用模拟用户进行训练,并在未经修改的情况下转移到现实世界,同时还有补充信息方案,包括学习到的红/绿光反馈提示和增强现实显示。策略模块不知道飞行员的意图,只能根据飞行员的输入和无人机的状态推断。助手将着陆和检查任务的任务成功率分别从 [16.67% 和 54.29%] 提高到 [95.59% 和 96.22%]。借助助手,缺乏经验的飞行员也能取得与经验丰富的飞行员类似的表现。红/绿灯反馈提示可将检查任务所需的时间缩短 19.53%,轨迹长度缩短 17.86%,参与者将其评为他们的首选条件,因为界面直观且令人放心。这项工作表明,简单的用户模型可以在模拟中训练共享自主系统,并转移到物理任务以估计用户意图并为飞行员提供有效的帮助和信息。
Nomura Real Estate Development Co., Ltd. (Head office: Shinjuku-ku, Tokyo; President and Representative Director: Daisaku Matsuo; hereinafter the “Company”) conducted joint research on the physiological effects of visual stimulation of a seascape from the Hamamatsucho Building with the Center for Environment, Health and Field Sciences, Chiba University (Emeritus Professor Yoshifumi宫崎骏(Miyazaki);研究得出的结论是,观看海景对大脑和自主活动具有放松作用。结果是在2023年11月举行的日本坎西工程学会的第25届年会上发布的。1.什叶布拉项目联合研究的背景(以下简称“项目”),该公司一直在促进大型综合用途设施的开发,以创建国际商业和旅游枢纽,作为东京湾地区的新象征。该项目提出了一种新的工作风格“东京的工作”,使办公室工作人员能够在享受城市便利的同时感到大自然,欣赏天空,海洋和新开发的绿色空间,并伸展到眼睛所能看到的。由于城市发展,全球居住在城市地区的人数正在增加。同时,城市居民在日常生活中无法享受自然的富裕。因此,人们对城市地区自然环境的使用和利用有很高的期望。结果的详细信息显示在下一页上。鉴于2020年2月,该公司开始使用与大脑和自主教活动有关的生理指数来促进自然疗法的联合研究,该研究科学地阐明了海滨位置对办公室工作人员和现代城市地区其他人的特征的影响。
1.0 简介 脊柱导航系统接收和传输有关脊柱解剖结构和植入物放置的数据,并将信息显示在计算机屏幕上,以便外科医生查看。导航系统由带屏幕的计算机工作站、软件、跟踪系统和手术器械组成。跟踪系统由附在患者身上的小型反射球体(脊柱参考阵列)组成,并由光学摄像机跟踪以记录解剖结构的位置。计算机建立脊柱模型并将图像投射到显示器上。外科医生用指针触摸患者解剖结构的某些部位,以便计算机能够识别并在其内存中记录这些点,包括特定的骨骼结构、解剖结构、患者正常解剖结构的运动和排列以及最佳关节排列。利用这些信息,计算机可以指导外科医生放置椎弓根螺钉。 2.0 指南定义 脊柱导航是一种用于脊柱手术的图像引导技术,通过接收和传输有关患者脊柱解剖的数据,实现更准确的椎弓根螺钉置入。 3.0 适用范围 本指南影响 CHI Crumlin 手术室的所有手术室护士和参与脊柱手术的成员。 4.0 指南目标 本文件为手术室护士提供导航设备和仪器使用和保养方面的指导。正确保养和操作导航设备和仪器对于患者和人员的安全至关重要。 5.0 定义/术语 脊柱导航 - 一种用于脊柱手术的图像引导技术,通过接收和传输有关患者脊柱解剖的数据,实现更准确的椎弓根螺钉置入。
按钮布局的一致性,机载显控系统的人机工效研究也 逐渐得到了相关领域的重视。为了解决仪表板日益拥 挤的问题,工程师在第 2 代机电伺服仪表的基础上对 飞行仪表进行综合,也对指示相关信息的仪表进行综 合,减少仪表数量;同时将无线电导航和其他经过计 算机加工的指引信息综合进相关的显示器中,形成第 3 代飞机仪表,即综合指引仪表。综合指引仪表不但 可以显示飞机综合的实时状态信息,同时还通过指引 信息告诉飞行员如何正确操纵飞机,以达到预定飞行 状态或目的地 [5] 。第 3 代头盔显示系统首次采用虚拟 成像技术,可直接将虚拟画面投射到驾驶员的面罩 上,配合计算机图像和数据处理运算技术,具备了实 时呈现画面的能力。 以人工智能、大数据为代表的信息技术在军事领 域广泛应用,现代战争形态演变不断突破,向着机械 化、信息化、智能化的方向发展。进入 21 世纪,触 屏及语音交互的方式取代了烦琐复杂的硬件按钮操 作,更为清晰的数字化屏幕也为信息显示提供了更大 的发展空间。第 4 代新型战斗机的机载设备通过更 大、更清晰的数字化屏幕呈现出更加多样的信息内 容。这一时期的人机交互主要通过数字屏幕进行信息 输出,通过语音、触摸屏和简洁的按键等多通道进行 信息输入。未来飞行员头盔的发展趋势是研制功能强 大、集综合性防护于一体的头盔系统,全息投影技术 也会逐渐发展成熟并应用于头盔显示器中 [6] 。历代战 机座舱显控界面见图 1 。 对战机座舱显控系统的发展,各领域的研究人员 针对人因工效、人机交互、座舱显示技术、人机协同 等方面进行了一系列研究。总结 20 世纪 80 年代至今具 有代表性的人物及研究成果,其研究成果引用量较高, 为座舱显控发展提供了理论依据或技术支撑,见表 1 。 军事技术的发展促使战场环境复杂性的大幅提 升,如 F–35 的大屏幕显示器将远不能满足飞行员获 取信息数据流的显示需求,而未来战斗机为了隐身, 会减小座舱空间,进而缩小座舱显示面积 [25] 。座舱内 的系统控制器将尽可能简化,除了保留一些控制飞行 的基本操作杆和少数与安全相关的控制器,其余的操
使用经过评估的、基于证据的指南,RANZCOG 编制了一个汇总表,概述了有关针对计划怀孕、怀孕、哺乳期妇女及其 6 个月以下婴儿的疫苗接种建议和推荐。建议分为不同时间类别 - 对于女性:计划怀孕;妊娠第一、二、晚期和产后,包括母乳喂养。对于婴儿 - 2 个月;4 个月和 6 个月大。虽然澳大利亚和新西兰的建议大体一致,但不同司法管辖区的疫苗接种建议存在一些差异。这是因为每本《免疫手册》中建议的措辞不同,此外各自的国家免疫计划的结构也不同,包括时间表细节(即年龄标准)、资金协议(不在本指南更新的范围内)和每个国家可通过疫苗预防的疾病的流行状况。因此,信息显示在两个单独的表格中(表 1:疫苗接种建议 - 澳大利亚和表 2:疫苗接种建议 - 新西兰),以确保注册的卫生专业人员和消费者获得适合其所在地区的正确信息。表 3:建议用于高风险人群的其他疫苗接种 - 澳大利亚和新西兰进一步总结了建议用于特定人群的其他疫苗接种。其中包括有关土著和托雷斯海峡岛民妇女及其婴儿的信息,但新西兰的标示指南并未确定任何专门推荐用于计划怀孕、怀孕、母乳喂养和/或六个月以下婴儿的毛利和/或太平洋妇女的疫苗。其他人群的更多信息,包括六个月以上的婴儿和有不同疫苗接种要求的群体,不在本指南更新范围内。以下是针对本指南未涵盖的以下特殊风险人群的建议:澳大利亚:针对特殊风险人群(包括免疫功能低下(即无脾、长期使用类固醇和其他药物)的妇女和婴儿;有复杂医疗需求的妇女和婴儿;移民和难民妇女和婴儿;以及有职业风险的妇女)的疫苗接种。
Eric L. Jorgensen 和 Joseph J. Fuller 编写的交互式电子技术手册 现有的技术手册问题 国防部武器系统后勤支援技术信息 (TI) 系统真正整合的目标,是计算机辅助采购和后勤支援 (CALS) 和公司信息管理 (CIM) 计划所要求的,但由于各部门继续依赖纸质技术手册 (TM) 来获取大部分信息,因此无法实现这一目标。除了造成与生产、储存、控制、修改和使用大量纸张有关的严重长期后勤问题外,目前构建的 TM 本身无法整合到自动化、标准化、交互式、实时系统中,从而以高度易懂的形式传输和共享后勤支援信息。具体来说,纸质技术手册:a.生产和管理成本不必要地高昂。尽管业界广泛采用自动化创作系统,但纸质 TM 无法利用许多最新技术进步(包括数据库管理、信息存储和信息显示)。因此,需要额外的人员和设施来对信息进行物理控制,而这些信息本来可以更有效地处理。b.严重阻碍了给定物流流程(从单一维护行动到全面的船舶或飞机大修)中所需技术信息的许多活动的全面整合,以至于基于纸张的技术信息方法通常会严重降低物流支持行动的有效性。c. 可用性(例如,在查找所需的特定信息时)和可理解性(例如,在复杂的故障隔离过程中)很差,以至于严重减慢了维护过程,增加了错误部件拆卸率,并大大增加了培训时间。新兴解决方案为了减轻这些问题的严重性,国防部正在大力推进 TM 生产和管理流程的自动化。例如,一旦生产出来,TI 就可以进行光栅扫描,以数字形式存储和传输,并在使用时打印在纸上(“按需打印”)。通过将这种面向页面的材料与计算机可读的“导航”指令叠加,可以通过发光屏幕显示更容易地定位所需的特定信息,从而在一定程度上提高可用性。然而,上述类型的现有 TM 自动化尝试,虽然它们可能在物流的特定点提供有限的改进 -
Eric L. Jorgensen 和 Joseph J. Fuller 编写的交互式电子技术手册 现有的技术手册问题 国防部武器系统后勤支援技术信息 (TI) 系统真正整合的目标,是计算机辅助采购和后勤支援 (CALS) 和公司信息管理 (CIM) 计划所要求的,但由于各部门继续依赖纸质技术手册 (TM) 来获取大部分信息,因此无法实现这一目标。除了造成与生产、储存、控制、修改和使用大量纸张有关的严重长期后勤问题外,目前构建的 TM 本身无法整合到自动化、标准化、交互式、实时系统中,从而以高度易懂的形式传输和共享后勤支援信息。具体来说,纸质技术手册:a.生产和管理成本不必要地高昂。尽管业界广泛采用自动化创作系统,但纸质 TM 无法利用许多最新技术进步(包括数据库管理、信息存储和信息显示)。因此,需要额外的人员和设施来对信息进行物理控制,而这些信息本来可以更有效地处理。b.严重阻碍了给定物流流程(从单一维护行动到全面的船舶或飞机大修)中所需技术信息的许多活动的全面整合,以至于基于纸张的技术信息方法通常会严重降低物流支持行动的有效性。c. 可用性(例如,在查找所需的特定信息时)和可理解性(例如,在复杂的故障隔离过程中)很差,以至于严重减慢了维护过程,增加了错误部件拆卸率,并大大增加了培训时间。新兴解决方案为了减轻这些问题的严重性,国防部正在大力推进 TM 生产和管理流程的自动化。例如,一旦生产出来,TI 就可以进行光栅扫描,以数字形式存储和传输,并在使用时打印在纸上(“按需打印”)。通过将这种面向页面的材料与计算机可读的“导航”指令叠加,可以通过发光屏幕显示更容易地定位所需的特定信息,从而在一定程度上提高可用性。然而,上述类型的现有 TM 自动化尝试,虽然它们可能在物流的特定点提供有限的改进 -
所显示的业绩为主动收入综合指数、动态分配综合指数和行业分配综合指数的业绩。估值以美元计算,业绩以美元报告。业绩结果假设股息再投资。某些客户账户可能会将股息作为分配。费用扣除后的收益仅作为补充信息显示,代表“纯总”收益。“纯总”收益是在扣除所有费用(包括交易费、咨询费和管理费)之前计算的。少数客户账户可能会将交易成本作为个人费用支付,这些账户的费用扣除后的收益将是交易费用后的净额。对于主动收入综合指数:用于计算综合指数净业绩的年度模型费用如下:2014-2015 年:1.40%;2016-2019 年:1.25%;2020 年:2.50%;2021-2024 年:2.00%。对于动态分配和行业分配组合:2014 年 7 月 1 日至 2018 年 6 月 30 日期间,扣除费用后的收益是通过将季度总费用收益减去 2% 的年度模型费用而计算得出的。从 2018 年 7 月 1 日至所示期间的结束,扣除费用后的收益是通过将每月总费用收益减去 2% 的年度模型费用而计算得出的。模型费用代表了向客户账户收取的实际费用,其中包括交易、咨询和其他费用。模型费用产生的业绩估计比之前报告的更为保守。通常,账户将支付捆绑费用中的交易成本,其中可能还包括咨询、管理和托管费用等项目。除了这些费用外,Astor 主要购买包含嵌入式费用的证券。这些成本导致费用分层。请注意,业绩结果包括单独支付交易成本的账户和支付包含咨询和交易成本的捆绑费用的账户。不评估基于业绩的费用。客户支付的年费通常为客户管理资产的 1.00%–3.00%。Astor 会从总费用中收取一部分作为其提供咨询服务的报酬。Astor 的年度管理费根据托管安排、账户规模和其他因素而有所不同。动态分配和行业分配组合包括 Astor 的直接咨询客户账户和作为综合费用或子咨询计划的一部分接受 Astor 服务的账户。
控制器等方面提出了工效学设计要求。 从国外组织来看,国外涉及船舶驾驶室操控界面的标准主要包括:国际海事组织IMO 于2000 年制定的标准《船桥设备和布局的工效学指南》( MSC/ Circ.982 ) [16] ,内容涉及船桥(包括驾驶室)布置、 作业环境、工作站布置、报警、控制界面、信息显示、 交互控制等7 个方面的驾驶室人机界面设计要求。国际海上人命安全公约SOLAS 于2007 年制定的标准《船桥设计、设备布局和程序》( SOLAS V/15 ) [17] , 内容涉及驾驶室功能设计、航海系统及设备设计、布置、船桥程序等,其显着特点是对于驾驶室团队管理作出相关要求,包括船桥程序、船员培训等。 从各个国家来看,美、英等西方国家在军事系 统工效学方面的研究已具有较大的规模,也制定了 一系列军用标准。美国军方军事系统的人机工程学设计准则包括“ 人机工程系统的分析数据” ( MIL.H.sl444 ) [118] , “ 军事系统人机工程学设计准则” ( MIL.STD.1472F ) [19] ,以及1999 年修订的“ 人机工程过程和程序标准” ( MIL.STD.46855A ) [20] 。 MIL-STD-1472 的第一版发布于20 世纪60 年代( 1968 年),在第二次世界大战期间,当时各交战国竞相发展新的高性能武器装备,但由于人机界面设计上的不合理,人难以掌握这些新性能的武器,导致发生了许许多多事故。因此,二次大战结束后,首先美国陆航部队(以后成为美国空军)和美国海军建立了工程心理学实验室,进行了大量的控制器、显示器等的人因素研究,获得了大量的数据,并开始将这些研究成果汇编成手册或制订成各种有关人类工程学的标准或规范。 MIL-STD-1472 就是在这样的时代背景下产生 的。该标准是为军用系统、子系统、设备和设施制定通用人类工程学设计准则,由美国陆军、海军和空军等多个单位评审,美国国防部批准,并强制性要求美国国防部所有单位和机构使用,具有较广泛的影响。 该标准在控制 - 显示综合和控制器章节有针对控制器 通用设计规则的阐述。 美国在船舶人机工程领域的投入力度也较大,不但开展了一系列的船舶人机工程专项试验,而且颁布了多项船舶人机工程设计标准和文件,主要侧重于研究人机环境对船舶的战斗力的影响。其中, ASTMF 1166—88 海军系统装备和设施的人因素工程设计标准是一个通用型标准,涵盖了控制、显示和告警、楼梯和台阶、标识和计算机、工作空间布局等海军设计的所有元素[21 ] 。 英国国防部于2005 年组织建立的船舶SRDs 系统,对船舶人机界面涉及的多方面问题进行梳理和整合,将人机界面研究作为船舶系统设计的一个重要环节,以提高人机界面设计在船舶项目中的优先级别。 英国国防部 2009 年的 MARS 项目计划,将早期人机 界面设计干预纳入到舰艇设计系统中,并委任专业公
完成对德国公司 FMB Feinwerk- und Meßtechnik GmbH 100% 股权的收购 SAES Getters SpA . (SAES)今天宣布完成对 FMB Feinwerk- und Meßtechnik GmbH(FMB Berlin)100% 股权的收购,该公司至今仍由大股东 Uwe Schneck、小股东 Ingmar Lehmann 和 Jens Rekow 以及 Mardi Beteiligungs GmbH & Co. 公司全资拥有。之前由 FMB Berlin 拥有的英国子公司 FMB Oxford Limited(FMB Oxford)不在收购范围内,因为其业务对 SAES 来说不具有战略意义。FMB Berlin 总部位于柏林,自 1990 年以来一直活跃于同步加速器和粒子加速器组件和科学仪器领域,是综合性的国际参与者。此次收购旨在巩固 SAES 集团在先进科研市场的国际地位和领导地位,扩大欧洲和全球粒子加速器和同步加速器中使用的真空系统的供应。收购价格为 800 万欧元,由 SAES 使用自有资源以现金支付。如果交割日的债务金额超过预定义的阈值,则该价格可能会进行调整。FMB 的现金金额在交割日接近于零。FMB Berlin 在 2023 年实现的收入约为 1340 万欧元,EBITDA 利润率为 13%。截至 2023 年 12 月 31 日,该公司的净资产为 480 万欧元。该公司目前拥有约 60 名员工。SAES 集团 SAES Getters SpA 公司是吸气剂技术开发的先驱,连同其子公司在需要高真空条件的各种科学和工业应用领域处于世界领先地位。在 80 多年的经营中,集团的吸气剂解决方案一直支持信息显示和灯具行业、复杂的高真空系统和真空隔热领域的技术创新,支持从大型真空功率管到微型设备(如硅基微电子和微机械系统 (MEMS))等技术的创新。自 2004 年以来,SAES 集团利用其在特殊冶金和材料科学方面的核心竞争力,将业务扩展到先进材料市场,特别是形状记忆合金市场,这种材料具有超弹性,并且在热处理时具有预定义形状的特性。这些特殊合金目前主要应用于生物医学领域,也非常适合实现工业领域(家庭自动化、白色家电行业、消费电子产品、医疗保健、汽车和奢侈品行业)的执行器设备。最近,SAES 通过开发将吸气材料集成到聚合物基质中的技术平台扩大了业务范围。这些产品最初是为 OLED 显示器开发的,目前用于新的应用领域,其中最重要的是光电子、先进光子学、电信(5G)和移动电话。SAES 还为消费电子市场提供功能性声学复合材料,并且正在验证从两个主要技术平台开发的新型功能材料:特殊沸石和微胶囊。这些新开发成果可以应用于从化妆品到油漆和涂料领域以及天然聚合物的各个领域。在最新的应用中,先进包装具有重要的战略意义,SAES 正在为食品可持续包装提供一系列新产品,并与可回收和可堆肥的解决方案展开竞争。