摘要 - 随着对软件定义的VEHICE(SDV)的需求不断增长,基于深度学习的感知模型在智能运输系统中变得越来越重要。但是,由于其实质性的要求,这些模型在实现实时和有效的SDV解决方案方面面临着巨大的挑战,这些要求在资源约束车辆中通常不可用。因此,这些模型通常会遭受低吞吐量,高潜伏期和过多的GPU/内存使用量,因此对于实时SDV应用而言,它们不切实际。为了应对这些挑战,我们的研究重点是通过在各种组合环境中整合修剪和量化技术来优化模型和工作流程,并利用诸如Pytorch,ONNX,ONNX运行时和Tensorrt之类的框架。我们系统地进行了分类并评估了三种不同的修剪方法,并结合了多个精确量化工作流程(FP32,FP16和INT8),并根据四个评估指标呈现结果:推理吞吐量,延迟,延迟,GPU/内存使用情况以及准确性。我们设计的技术,包括修剪和量化,以及优化的工作流程,可以达到最高18倍的推理速度和16.5倍越高的吞吐量,同时将GPU/内存使用量最多减少30%,所有这些都对准确性的影响最小。我们的工作建议使用用FP16精度和组修剪来量化的火炬 - 荷兰 - 托管工作流,作为最大程度地提高推理性能的最佳策略。它表现出在SDV中优化实时,有效的感知工作流程的巨大潜力,这有助于增强深度学习模型在资源约束环境中的应用。
a,骨骼发育与青春期激素水平具有很强的相关性。作为骨骼形式,生长区域内的声电导率发生变化。这种电导率的变化是当代超声骨时代评估的基础 - 一种提供客观的方法,对儿童和青少年的生物年龄(BA)的无创估计。尽管很大一部分人口将其BA与年代年龄相一致,但也有一些加速的个体,其BA超过CA,而减速的人则小于其CA(插图没有显示这些变化,仅显示了平均骨骼发育的例子)。b,大脑发育也受到青春期激素水平的动态变化的深刻影响。例如,青春期发作启动了靶向的突触修剪过程(树突状脊柱密度的降低),然后修剪一直持续到整个神经系统的成年期。但是,正如我们的概念数字所表明的那样,突触修剪可能不遵守其预期的过程,但在加速或减速的青春期成熟情况下可能会发生失调。不合时宜地成熟,可能会导致分层脑组织变化的出现,这是当前研究中解决的主要问题。
在我们地区和整个加利福尼亚州,需要大量的公用事业线路清理树艺师来检查和修剪树木,以防止它们在恶劣天气条件下造成停电和火灾。为了满足这一需求,SDG&E 与圣地亚哥继续教育学院基金会合作,在该学院位于圣地亚哥东南部的员工培训学院开设了公用事业线路清理树艺师课程。通过完成这个免学费的五周课程,服务不足的圣地亚哥人可以获得修剪公用事业设备周围树木的资格。他们踏上了一条需求量大、收入丰厚的职业道路,为我们地区的安全和经济增长做出了贡献。
2022 年 4 月 1 日 — 合身的,你很快就会穿不下它们。布料应该垂直。保持整齐熨烫。头发 — 保持两侧和后背修剪整齐。顶部头发。
本文探讨了在迁移学习应用中使用神经网络修剪来实现更高效的推理。目标是将神经网络集中并优化在较小的专门目标任务上。随着物联网的出现,我们看到基于人工智能的移动和嵌入式设备(如可穿戴设备和其他智能设备)的应用大幅增加。然而,随着机器学习算法的复杂性和能力不断增加,由于这些设备上资源有限,这种向边缘的推进带来了新的挑战。需要某种形式的压缩才能让最先进的卷积神经网络在边缘设备上运行。在这项工作中,我们调整了现有的神经网络修剪方法,使它们能够专门化网络,使其仅关注最初训练的子集。这是一个迁移学习用例,我们优化大型预训练网络。这与标准优化技术不同,它允许网络忘记某些概念,并使网络的占用空间更小。我们比较了不同的修剪标准,包括可解释人工智能 (XAI) 领域的标准,以确定哪种技术可以实现尽可能小的网络,同时保持目标任务的高性能。我们的结果显示了在嵌入式设备上执行神经网络时使用网络专业化的好处,无论是否使用 GPU 加速。
我们从神经科学(“连接组学”)了解到,大脑总体上是一个非常稀疏的网络,具有相对较小的局部密集神经元簇。这些拓扑特性对于大脑高效、稳健地运行以及以分层模块化方式处理信息的能力至关重要。另一方面,我们今天使用的人工神经网络非常密集,甚至是完全连接的,至少在连续层之间是如此。此外,众所周知,深度神经网络高度参数化:修剪研究表明,通常可以消除 90% 的连接(权重)而不会显着降低性能。然而,修剪通常是在密集网络训练之后进行的,这只会提高推理过程的运行时效率。前面的观点表明,我们需要设计稀疏神经网络的方法,无需任何训练,在训练后其性能几乎与相应的密集网络一样好。本次演讲将首先介绍一些修剪文献的背景,无论是在训练之后还是在训练之前。然后,我们将介绍一种最近提出的(ICML 2021)方法,称为 PHEW(具有更高边权重的路径),该方法在训练之前创建稀疏神经网络,并且可以快速学习并很好地概括。此外,PHEW 不需要访问任何数据,因为它仅取决于给定网络架构的初始权重和拓扑。
补体信号传导被认为是促进小胶质细胞突触的吞噬作用的打击信号。然而,尽管在视网膜 - 丘脑系统中已经证明了其在突触重塑中的作用,但尚不清楚补体信号传导是否更广泛地介导了大脑中的突触修剪。在这里,我们发现缺乏补体受体3(主要小胶质细胞补体受体)的小鼠未能显示出发育中的小鼠皮层中突触修剪或消除轴突的缺陷。相反,缺乏补体受体3的小鼠在围产期消除皮质中的神经元表现出不足,这种缺陷与在成年区域内的皮质厚度增加和功能连接增强有关。这些数据证明了补体在促进发展皮层中神经元消除的作用。
请参阅 .as_table 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 2 种诊断。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3 是_这个。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 4 是_医学。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6 总体而言。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 7 hvtn505。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 8 加载数据。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 9 params_ce_cox。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 10 参数_ce_np。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 11 params_med_np。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 13 情节_ce。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 14 摘要统计。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16 修剪。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16