1.3 T HIS W ORK ................................................................................................................................................ 21
基因选择性转录因子通过与其靶基因调节区域内的特定DNA元件结合(1)。但是,并非完全定义此DNA结合的序列要求。几个参数,例如蛋白质 - 蛋白质相互作用与相邻结合的因素,DNA结构的影响(弯曲等)。),重要的是,结合位点与认知因子的比率确定给定转录因子是否可以有效地与相应的结合位点相互作用。体外和大概也在体内也是如此,对于确定转录因子是否会与其最佳识别序列的变体结合,因此,它的基因调节。在这些考虑因素中提示,我们询问是否存在一种蜂窝机制,该机制是否存在在转录因子活动和可用目标位点的繁琐之间保持平衡。对AP-1家族成员的特征良好转录因子C-Jun进行了实验(2-4)。包含AP-1结合位点的启动子是C-Jun调节的目标。C-Jun的活性受到多种机制的紧密控制,并且对蛋白质的异常调节会导致恶性转化和致癌作用(5)。在这项研究中,我们描述了一种机制,该机制通过改变其磷酸化态的DNA结合活性,取决于细胞中存在的C-Jun结合位点的浓度。这种机制可以用来设置和微调C-Jun与其结合位点的比率。有趣的是,与这种现象有关的磷酸化位点与以前据报道经历信号依赖性去磷酸化相同。
前列腺癌是全球最常见的疾病之一。尽管最近在治疗方面取得了进展,但晚期前列腺癌的患者的预后较差,并且该人群的需求很高。了解前列腺癌的分子决定因素和疾病的侵袭性表型可以帮助设计更好的临床试验并改善这些患者的治疗方法。晚期前列腺癌经常改变的途径之一是DNA损伤反应(DDR),包括BRCA1/2的改变和其他同源重组修复(HRR)基因。DDR途径的改变在转移性前列腺癌中尤为普遍。在这篇综述中,我们总结了原发性和晚期前列腺癌中DDR改变的普遍性,并讨论了DDR途径中的变化对DDR基因的侵袭性疾病表型,预后和种系致病性的关联的影响,而DDR基因与患有前列腺癌风险的DDR基因改变了。
修复咨询委员会 Microsoft Teams 混合会议记录 前海军航空站 缅因州布伦瑞克 2023 年 9 月 20 日,星期三 介绍 Dave Barney 于下午 2:05 开始会议 这次会议采用混合形式,有虚拟和面对面与会者。Jackie Boltz 审查了会议的 Microsoft Teams 工具,包括问答选项,Dave 审查了会议议程、混合会议信息和基本规则。Dave 指出,采用混合会议形式是为了允许最广泛的参与,并且会议仅用于准备会议记录。幻灯片 7 列出了会议公告比过去分发更广泛的方式。此更改符合最近更新的社区信息计划 (CIP)。Dave 参考了 RAB 成员名单(幻灯片 8),并指出 Rachelle Knight 将转任海军 RAB 联合主席。苏珊娜·约翰逊注意到斯科特·利比已辞去托普沙姆镇代表一职,并介绍了新任托普沙姆代表苏珊·肖。苏珊拥有 30 年的环境和公共卫生专业经验,具备风险评估、环境合规和流行病学背景,并曾担任多个州和联邦政府职务,包括能源部橡树岭国家实验室和缅因州疾病控制和预防中心的职务。苏珊娜询问月底政府可能关门的影响。戴夫回答说,海军的 BRAC 活动仍有资金支持,工作将继续进行。苏珊娜询问环保署是否会受到影响,戴夫回答说,在上次关门期间,环保署仅靠约 5% 到 10% 的员工开展工作。主要现场活动更新 RAB 成员 – 戴夫·巴尼戴夫在幻灯片 9 中总结了有关 RAB 成员的信息。 Suzanne 和 Dave 指出,虽然幻灯片中提到 RAB 成员预计任期 2 年,但任何人都可以根据自己的时间参与并出席任意数量的会议。
有毒污染物(例如重金属和有机化合物)对人类健康产生有害影响,从而引发全球关注。1,2此外,气候变化的行星边界已经超过,并且正在对地球造成不可逆转的损害。3因此,已经引入了几种水纯化和CO 2捕获方法。4,5尽管这些技术既可靠又有效,但由于高能源需求和成本,它们是不可持续的。6因此,开发可持续和环保的技术至关重要。金属 - 有机框架(MOF)是高度多孔纳米结构,其中包括金属离子/簇和有机接头7具有特色特征,例如高孔隙率和表面积,多样性和灵活性。8这些特性使MOF能够在吸附,9气体捕获,10和分离,11以及环境修复方面具有较高的潜力。12个基于锆的MOF,UIO-66和UIO-66-NH 2具有较高的热液稳定性,13对水的应用有益。此外,UIO-66-NH 2中的氨基组允许CO 2吸附属性。14然而,直接应用粉末状MOF(例如由于脆弱和晶体结构引起的可加工性差),存在某些局限
PHC 修复 我们是北卡罗来纳州中部紧急火灾和水灾修复行业中最好和最受尊敬的品牌。我们的使命是对我们的队友、客户和社区产生积极影响。我们的核心价值观是同情、热情、谦逊、感恩和忠诚。修复是我们的使命,我们热爱我们的工作!服务专家宗旨:服务专家是“实现目标”的人,他们知道如何做每件事。作为从我们接到第一个电话到完成清单都能提供价值的人,服务专家是 PHC 修复团队不可或缺的一部分。典型职责:
a. 作为一名 EPA 科学家,你会如何向你的老板解释什么是生物修复,以及为什么用它来清理墨西哥湾漏油事件是个好主意?b. 我们可以使用生物修复技术来解决哪些其他环境问题?c. 生物修复技术有哪些缺点?你认为我们可以如何处理这些问题?d. 你认为生物修复技术在未来几年会变得更加普遍吗?为什么会或为什么不会?e. 北卡罗来纳州立大学的研究人员一直在研究使用附着在纳米纤维上的真菌去除水中的重金属 (Park et al., 2020)。饮用水中重金属污染的一些来源有哪些?为什么这是一个值得关注的问题?目前用于去除水中重金属污染物的技术有哪些?你认为这些研究人员为什么对使用真菌感兴趣?
根在纽约州长岛长大,高中期间他找到了一份在柔性印刷方面的工作 - 一种快速印刷在各种材料(例如塑料和纸)上的方法。这项工作经验促使他追求学士学位罗切斯特大学化学工程学。 他热爱他的大学有机化学课程,并被有机分子(特别是聚合物)的复杂几何形状所吸引。 聚合物是由较小的定制分子单元组成的巨大分子,它们通过化学键相互连接,形成具有独特且有用的材料特性的柔性链和网络。 作为一个类比,聚合物就像由互连的乐高积木组成的完整LEGO®设置。 一个重要的细微差别是聚合物不是像LegoS®那样刚性,而是分子构建块的柔性组件。 一些众所周知的聚合物的例子包括DNA,泡沫聚苯乙烯和橡胶。 山姆对聚合物的兴趣,再加上他对柔性印刷的背景,使他从事软光刻的本科研究项目。 从罗切斯特毕业后,Root攻读博士学位。加州大学圣地亚哥分校的化学工程专业,被南加州的温暖天气和美丽的海滩引诱,以及进一步探索他对聚合物的热爱的机会。 在接下来的四年中,Root研究了Darren Lipomi教授的指导下的半导体聚合物的机械性能。 在2021年,Root返回加利福尼亚,并加入了斯坦福教授Zhenan Bao的实验室,将他在聚合物复合材料的经验应用于自我修复电子产品。罗切斯特大学化学工程学。他热爱他的大学有机化学课程,并被有机分子(特别是聚合物)的复杂几何形状所吸引。聚合物是由较小的定制分子单元组成的巨大分子,它们通过化学键相互连接,形成具有独特且有用的材料特性的柔性链和网络。作为一个类比,聚合物就像由互连的乐高积木组成的完整LEGO®设置。一个重要的细微差别是聚合物不是像LegoS®那样刚性,而是分子构建块的柔性组件。一些众所周知的聚合物的例子包括DNA,泡沫聚苯乙烯和橡胶。山姆对聚合物的兴趣,再加上他对柔性印刷的背景,使他从事软光刻的本科研究项目。从罗切斯特毕业后,Root攻读博士学位。加州大学圣地亚哥分校的化学工程专业,被南加州的温暖天气和美丽的海滩引诱,以及进一步探索他对聚合物的热爱的机会。在接下来的四年中,Root研究了Darren Lipomi教授的指导下的半导体聚合物的机械性能。在2021年,Root返回加利福尼亚,并加入了斯坦福教授Zhenan Bao的实验室,将他在聚合物复合材料的经验应用于自我修复电子产品。在UCSD之后,Sam的学术旅程将他带回了东北,在那里他在乔治·怀特塞德斯教授的实验室的哈佛大学博士后工作了几年。Root喜欢跑步,很高兴发现Bao集团拥有自己的跑步俱乐部“跑步Baos”,该俱乐部由BAO Group成员Lukas Michalek博士创建!这座课外社区建筑确实有助于建立了一个有效的团队,并引发了Root和Lukas之间的研究合作,他们都是自我修复电子科学论文的合着者。这篇Nano@Stanford通讯文章提供了有关其研究的高级摘要,该摘要是为具有广泛技术背景的多样化受众编写的。如果您想了解更多信息,则可以阅读其科学论文中的所有细节:( doi:10.1126/science.adh0619)。
摘要E. COIL K-1中的基本不匹配校正过程称为非常短的贴片(VSP)修复,将t:G不匹配到C:G时在某些序列上下文中发现时。在DNA中胞质甲基化的背景下,两个底物不匹配(5'-ctwgg/3'-ggw'cc; w = a或t)出现,并减少5-甲基环胞嘧啶脱氨酸对胸腺氨酸的诱变作用。然而,VSP修复也已知可以修复T:G不匹配,而与5-甲基环胞嘧啶脱氨基(示例-CTAG/GGT- C)不会产生。在这些情况下,如果原始基对为t:a,VSP修复将导致t向C转换。我们已经对大肠杆菌序列数据库进行了马尔可夫链分析,以确定后者类别的修复是否改变了相关的四核苷酸的丰度。结果与预测VSP修复会倾向于耗尽包含序列的“ t”的基因组(示例-CTAG),同时富集了它的相应“ C”含量序列(CCAG)。此外,它们为肠道细菌基因组中的限制酶位点的已知稀缺性提供了解释,并将VSP修复鉴定为塑造细菌基因组序列组成的力量。