•生态系统模型:状态和过渡模型(STM)用于综合有关不同生态系统类型的动态和恢复选项的知识。它们可以用于项目计划中,以识别当前的生态系统状态和状况。这些范围可能从高度修改状态较低的状态到状态很高的“参考”状态。STM还描述了通过恢复结构,功能和组成来改善生态系统条件所需的动作。咨询了一系列专家,以提供建议,知识和数据,以创建反映区域生态系统动态的STM。•国家生物多样性评估系统(NBAS):NBA将来自生态系统模型,本地项目数据和国家规模映射的信息整合到预测本地和整个系统层面项目的预期生物多样性益处。系统水平的整体好处包括对景观连通性的贡献,恢复高度清除的植被类型以及生物多样性的整体持久性。•原住民的知识,价值和数据:CSIRO和DCCEEW认识到原住民人民1作为传统所有者和知识持有人的重要作用。正在进行的工作正在探索原住民知识,价值和数据如何与EKS适当相互作用。目前正在进行一个框架共同设计的过程,以指导这种交互。此过程认识到土著数据主权的重要性,支持土著领导力并使适当的治理系统领导共同设计。__________________________________________________________________________________________
摘要:使用极端微生物的生物修复由于其独特的自然生物过程在各种极端环境中繁衍生息,因此引起了公众的关注。极端微生物提供了一种有效,可持续和具有成本效益的策略,以在极端条件下补救有毒环境污染物。极性微生物是根据它们在各种极端环境中适应和生长的能力来分类的,其中包括具有不同自适应性状的各种微生物。一些极端嗜微生物包括嗜热剂,热疗,精神噬菌体,嗜酸剂,碱性,蜂巢虫,卤素,压电,金属固醇,毒剂,放射性,放射性和微氧化物。几种生物修复技术包括生物学,生物渗以,生物吸附,生物精彩,生物还原等等。生物提升增强了自然生物降解过程;生物含量涉及金属硫化物的氧化;生物吸附着重于金属吸附在生物质表面上。生物精制是金属离子向固体沉淀的转化。生物还原是将金属离子还原为毒性较小或可溶性结构。尽管使用极端微生物进行了生物修复的所有好处,但它仍然存在缺点和挑战,包括复杂的维护,道德问题和有限的可伸缩性,这需要持续的研究以优化其在环境污染治疗中的应用。需要进一步的研究来集中精力理解其生态学,基因表达和代谢,以确保全球范围内的可持续性和有效性。
生物修复是一种治疗技术,它通过提供某些修正案(例如增加氧气,限制营养素或添加外来微生物物种)来利用有机污染物的生物降解(Vidali,2001)。这项环保技术利用微生物的代谢活动来清理受污染的环境,将有害污染物转化为无害物质,并提供可持续的解决方案,以修复受污染的土壤和地下水。鉴于全球对环境污染的关注以及传统补救方法的局限性,生物修复提出了一种有希望的选择。本文旨在提供对生物修复的全面概述,讨论其关键特征,各种技术及其挑战。
监管机构。现场试验涉及两个500 m 3油性土壤样品,初始油含量分别为5.01%和2.15%,表明可以在50天内将石油碳氢化合物含量分别降低至0.41%和0.02%,达到耕地类别II的国家标准。治疗期明显短于常用的堆肥和生物学方法。通过黑麦种子的发芽实验研究了微生物活化剂对油土的补救效果。结果表明,激活剂本身不仅可以激活土壤中的功能性微生物,还可以降低油土的生物毒性。经过40天的治疗后,黑麦种子的发芽率从20–90%增加,表明微生物激活剂可有效地用于快速对油污染的土壤的原位补救。
1 PG学者,结构工程,库姆拉古鲁技术学院2库姆拉古鲁技术学院结构工程副教授,库姆拉古鲁技术学院摘要水泥,对建筑至关重要,对重金属污染产生了重大的环境风险,包括铅,钙,铬,铬,镍,镍等。这些金属在水泥生产过程中释放,危害人类健康和生态系统。一种创新的方法涉及利用微生物进行生物修复,将污染物转化为有害形式较小的形式。微生物发展了对重金属的抗性机制,从而降低了水泥中的浓度和迁移率。在该项目中,收集了各种品牌和水泥类型,并培养了不同的细菌。对使用原子吸收光谱(AAS),能量分散X射线分析(EDAX)和扫描电子显微镜(SEM)进行生物治疗前后的机械性能,重金属浓度,元素组成,表面形态和水泥的粒径进行了比较。比较了传统和细菌诱导的水泥样品之间从进行的测试中获得的结果。这种生物技术方法的实施不仅解决了环境问题,而且还促进了建筑中创新和可持续解决方案的发展。关键字:水泥,重金属,生物修复,微生物,原子吸收光谱(AAS),能量分散X射线分析(EDAX),扫描电子显微镜(SEM),可持续性。
DNA碱基损伤是致癌突变和基因表达中断的主要来源。RNA聚合酶II(RNAP)在DNA损伤部位的失速和随后的修复过程触发在塑造基因组 - 突变的广泛分布,清除转录障碍以及最小化错误编码的基因产物的过程中具有重要作用。尽管对遗传完整性的重要性很重要,但这种转录耦合修复(TCR)过程的关键机理特征是限制或未知的。在这里,我们利用了一个井中的体内哺乳动物模型系统,以探索TCR的机械性能和参数,以良好的空间分辨率以及损坏的DNA链的区分,以烷基化损伤。为了进行严格的解释,开发了DNA损伤和TCR的可推广数学模型。将实验数据拟合到模型,模拟表明RNA聚合酶经常绕过不触发修复的病变,表明小烷基化加合物不太可能是基因表达的有效障碍。损害爆发后,转录 - 耦合修复的效率逐渐通过基因体衰减,对癌症驱动器突变的发生和准确推断的影响。重新修复修复位点的转录不是转录的一般特征 - 耦合修复,并且观察到的数据与重新定期永远不会发生。共同揭示了TCR的方向性但随机活性如何塑造DNA损伤后突变的分布。
1国家研究委员会,微电子和微系统研究所,CNR-IMM,通过S. Sofia 64,95123意大利卡塔尼亚; vanessaspano23@gmail.com(V.S. ); massimo.zimbone@ct.infn.it(M.Z。 ); federico.giuffrida@dfa.unict.it(f.g。); giuliana.impellizzeri@ct.infn.it(g.i。) 2卡塔尼亚大学物理与天文学系,通过圣索非亚64,95123意大利卡塔尼亚3国家研究委员会,微电导和微系统研究所,CNR-IMM,工业区,Strada VIII n。 5,95121意大利卡塔尼亚; gianfranco.sfuncia@cnr.it(G.S. ); giuseppe.nicotra@cnr.it(g.n。 ); Alessandra.alberti@cnr.it(a.a.); SILVIA.SCALESE@CNR.IT(S.S.)4国家研究委员会,CNR-IPCB复合和生物材料聚合物研究所,通过Paolo Gaifami 18,95126意大利卡塔尼亚; libera.vitiello@cnr.it(l.v. ); sabrinacarola.carroccio@cnr.it(s.c.c.) *信函:maria.cantarella@ct.infn.it1国家研究委员会,微电子和微系统研究所,CNR-IMM,通过S. Sofia 64,95123意大利卡塔尼亚; vanessaspano23@gmail.com(V.S.); massimo.zimbone@ct.infn.it(M.Z。); federico.giuffrida@dfa.unict.it(f.g。); giuliana.impellizzeri@ct.infn.it(g.i。)2卡塔尼亚大学物理与天文学系,通过圣索非亚64,95123意大利卡塔尼亚3国家研究委员会,微电导和微系统研究所,CNR-IMM,工业区,Strada VIII n。 5,95121意大利卡塔尼亚; gianfranco.sfuncia@cnr.it(G.S. ); giuseppe.nicotra@cnr.it(g.n。 ); Alessandra.alberti@cnr.it(a.a.); SILVIA.SCALESE@CNR.IT(S.S.)4国家研究委员会,CNR-IPCB复合和生物材料聚合物研究所,通过Paolo Gaifami 18,95126意大利卡塔尼亚; libera.vitiello@cnr.it(l.v. ); sabrinacarola.carroccio@cnr.it(s.c.c.) *信函:maria.cantarella@ct.infn.it); giuseppe.nicotra@cnr.it(g.n。); Alessandra.alberti@cnr.it(a.a.); SILVIA.SCALESE@CNR.IT(S.S.)4国家研究委员会,CNR-IPCB复合和生物材料聚合物研究所,通过Paolo Gaifami 18,95126意大利卡塔尼亚; libera.vitiello@cnr.it(l.v. ); sabrinacarola.carroccio@cnr.it(s.c.c.) *信函:maria.cantarella@ct.infn.it); sabrinacarola.carroccio@cnr.it(s.c.c.)*信函:maria.cantarella@ct.infn.it
精确修复DNA双链断裂(DSB)对于维持基因组完整性至关重要,因为无法修复DSB会导致细胞死亡。该细胞已经发展了DSB修复的两种主要机制:非同源最终连接(NHEJ)和同源性定向修复(HDR),其中包括单链退火(SSA)和同源重组(HR)。虽然已知某些因素(例如年龄和染色质的状态)会影响DSB修复途径的选择,但在多细胞生物中尚未阐明发育阶段,组织类型和性别的作用。通过分子分析DR-sophila melanogaster在各种胚胎发育阶段,幼虫和成人组织的影响,通过分子分析DR-白色测定法(Tide)。在维持规范(G1/S/S/G2/M)细胞周期的组织中,HR修复的比例最高,并且在两个末端分化和多倍体组织中都被抑制。为了确定性别对修复途径选择的影响,分析了男性和女性的不同组织中的修复。当分子检查含有大部分细胞的组织时,雄性和女性会占据相似的HR和NHEJ比例。然而,当使用DR-White分析的表型分析对男性和雌性前生殖细胞中DSB修复进行分析时,与雄性相比,女性的HR显着下降。这项研究描述了发育,组织特异性循环特征的影响,在某些情况下,性别对DSB修复结果的影响,强调了多细胞生物的修复的复杂性。