心脏纤维化是急性心肌梗塞(MI)和其他其他慢性疾病的共同特征,例如高血压,糖尿病和慢性肾脏疾病[1]。心力衰竭(HF)与高死亡率和生活质量差有关,并对卫生系统造成沉重负担。流行病学研究表明,根据2015年至2018年的数据,约有600万美国成年人患有HF。HF发病率在人口中达到每1000人10。许多研究强调,心脏纤维化的严重程度与心脏不良事件和死亡率相关[2,3]。心脏纤维化被定义为心肌外基质(ECM)蛋白质沉积(主要是胶原I和III)的增加,这会损害心脏功能。两种类型的心脏纤维病变已根据其定位和ECM蛋白质沉积的特征定义[4]。第一个是一个修复过程,也称为替代纤维化,被视为疤痕组织。在这种缺血性疾病中,心肌缺氧导致心肌细胞的坏死和凋亡,导致大量心脏细胞损失,这对于心脏功能至关重要。心肌细胞死亡启动了三联免疫反应,旨在清除细胞碎片并促进损伤的心肌替代以维持心脏功能[5]。第二种粘纤维病变是间质纤维化,其特征是胶原蛋白在内体和外膜中的弥漫性沉积。因此,这种间质纤维化经常有血管性纤维化,特定地被认为是慢性损伤继发的,例如压力超负荷(主动脉瓣狭窄,高血压),心脏炎症(心脏炎症)(心肌炎)和代谢性疾病(OBESITY,OBESITY,糖尿病,糖尿病,糖尿病)以及敏捷。在幸存的梗塞心脏中也经常观察到它在偏远地区发育的心脏。心肌间质纤维化发育改变了心肌结构和生理学,改变了左心室依从性,舒张功能和电连通性,导致芳香族病和不良后果(住院,死亡率)[6-8]。无论背景如何,间质性心脏纤维都与心脏功能障碍相关,并且众所周知,有或没有保留的射血分数有助于HF。
条件:该部队执行机场损坏修复 (ADR) 操作,以对战争损坏的机场进行紧急修复和/或超紧急修复。机场已清除爆炸危险,初步修复已完成。单位标准操作程序 (SOP)、各个项目的计划和规范、分配的人员和设备均已提供。 注意:指挥官评估当前单位训练水平并确定单位执行的训练水平(爬行、行走或跑步)。指挥官在评估之前确定任务是在现场、虚拟还是建设性环境中进行。该部队将使用下面的客观任务评估标准矩阵来执行任务。操作环境应基于当前单位的熟练程度。在达到训练标准之前,单位不应增加强度。单位可以包括提高所有条件下熟练程度的变量。注意:条件声明是假设动态和复杂的训练变量反映在客观任务评估标准矩阵中,即被评估单位获得“全面训练”(T)评级的要求。注意:条件术语定义:动态作战环境:作战变量和威胁战术、技术和程序(TTP)随着蓝军(BLUFOR)执行任务而变化。复杂作战环境:需要至少四个或更多作战变量;旅级及以上单位需要根据正在训练的任务以不同程度复制政治、军事、经济、社会、基础设施、信息、物理环境和时间(PMESII-PT)的所有八个作战变量。单一威胁:常规、非常规、犯罪或恐怖分子。混合威胁:正规部队、非正规部队、恐怖分子和/或犯罪分子的多样化和动态组合,统一起来实现互利效果。 此任务不应在 MOPP 4 中进行培训。标准:该部门进行机场损坏修复 (ADR) 操作,包括根据 (IAW) TSPWG 手册 3-270-01.3-270-07 和单位 SOP 维持或重建运营所需的修复。单位指挥官监督修复过程,确保机场在建设任务中概述的时间范围内恢复到作战准备状态。注意:领导者定义为指挥官、执行官、一级军士长、作战军士长、排长、排长、班长和团队领导。
编译者:Dinesh Kumar Sharma博士简介免疫系统已进化以保护我们免受病原体的侵害。细胞内病原体感染各个细胞(例如病毒),而细胞外病原体在组织或体腔内细胞外分裂(例如许多细菌)。免疫力是多细胞生物抗药物微生物进入其细胞的能力。免疫力涉及特定和非特异性成分。非特异性组件充当多种病原体的障碍物或消除剂,无论其抗原构成如何。免疫系统的其他成分适应于遇到的每种新疾病,并可以产生特定于病原体的免疫力。免疫学的学科是从从某些传染病中恢复过来的个体受到疾病的保护。拉丁语疫苗,意思是“豁免”,是英语单词免疫的根源,即一种保护状态的传染病。先天免疫具有三个重要功能:1。先天免疫是对微生物的初步反应,可防止,控制或消除许多微生物感染宿主的感染,2。先天免疫机制识别受损和死亡宿主细胞的产物,并消除这些细胞并启动组织修复过程,3。先天免疫:非特定成分的先天免疫反应并不是针对特定病原体的特定方式,以适应性免疫反应的方式。对微生物的先天免疫力刺激适应性免疫反应,并可以影响适应性反应的性质,以使其对不同类型的微生物类型的免疫力最佳有效:免疫系统包括先天和适应性成分:免疫 - 免疫 - 免受感染性疾病的状态既具有非特异性和特定特定的成分和特定的成分。它们取决于一组蛋白质和吞噬细胞,这些蛋白质和吞噬细胞识别病原体的保守特征并迅速被激活以帮助破坏入侵者。不太具体的组成部分,先天免疫,为感染提供了第一道防线。大多数先天免疫的成分都存在于感染发作之前,并且构成了一组抗病机制,这些机制不是特定病原体的特定,但包括细胞和分子成分,识别经常遇到的病原体特有的分子类别。吞噬细胞,例如巨噬细胞和中性粒细胞,屏障,例如皮肤以及由宿主合成的多种抗菌化合物,在先天免疫中都起着重要作用。
刺激神经元引起的刺激会引起直接与早期基因的转录,这一过程需要在几分钟内通过托泊异构体IIB产生的染色体DNA局部位点形成双链断裂(DSB),然后在几个小时内修复。清醒,探索新的环境以及上下文恐惧条件也引起了需要DSB和修复的突触基因的转折。已有报道(在非神经元细胞中),在修复位点时,在DSB上会形成外粒体圆形DNA。i提出,激活的神经元可能在DSB部位修复过程中会产生外圆形圆形DNA,从而产生该活性模式的持久“标记”,这些模式包含来自其原产地点的序列并调节长期基因表达。尽管外染色体外DNA的种群是多种多样的,并且总体上与病理学相关,该病理是一个小圆形DNA的子类(“ microdnas”,长约100-400个碱基),很大程度上源自独特的基因组序列,并且具有吸引人的吸引力,并且具有吸引人的特征,可作为稳定,移动圆形DNA,以调节基本表达序列中的序列化型(序列)。圆形DNA可以是RNA转录的模板,尤其是抑制性的siRNA,圆形RNA和其他与microRNA相互作用的非编码RNA。这些可能调节与突触可塑性,学习和记忆有关的其他基因的翻译和转录。移动DNA的另一个可能的命运是在响应随后的激活事件而生成新的DSB站点后,将稳定地插入染色体中。因此,将移动DNA插入活性引起的基因可能倾向于使它们失活并有助于稳态调节以避免过度激发,并为神经元的激活史提供了“计数器”。此外,激活的神经元释放分泌外泌体,可以转移到受体细胞中以调节其基因表达。可移动DNA可以包装到外泌体中,以活动依赖性方式释放,并转移到受体细胞中,在那里它们可能是调节性RNA的模板,并可能掺入染色体中。最后,衰老和神经退行性疾病(包括阿尔茨海默氏病)也与神经元中DSB的增加有关。将来要评估病理学与活动引起的移动DNA以及后者是否有可能有助于发病机理的病理学与活动有关。
抽象生物修复是指使用生物学剂清洁环境。污染的增加导致环境中有毒物质的增加,并被称为最有效的管理工具生物修复,这将被称为“ ECO生物技术”。因此,我们可以推断出生物修复是一种有吸引力的工具,该工具在降级并通过这项技术发作而获得的原始位置。生物修复技术使用微生物来补救受污染的环境,并将其恢复到原始位置。Bioremedixed也是解决各种新兴问题的解决方案。几个因素影响生物修复的过程,因此这些因素在生物修复过程中起着至关重要的作用。关键词:生物修复,生物技术,微生物,污染,修复因子简介生物修复与污染地点的生物恢复和康复有关,以及最近或偶然地或偶然地清理受污染区域的生产,由于制造业,储存,运输,运输,运输,不合理的和有机化的化学效果(欧洲化学和有机物)(<<<<<<<,1994)。生物修复提供了通过细菌的作用来降解,去除,改变,固定或以其他方式从环境中排毒的各种化学物质(Sung等,2016; Verma等,2006和Boruvka和Boruvka and Vacha,2006年),植物和植物和Fungi(Kvesitadze et al。)。影响生物修复的因素生物修复原则是微生物(主要是细菌或真菌)用于降解危险污染物或掩盖其危害形式较小。通过微生物学,分子生物学生物化学,分析化学,化学和环境工程等各个领域的帮助实现了生物修复的进步。因此,污染物的生物修复是微生物代谢活性的应用。微生物及其酶促途径充当生物催化剂,并促进了对靶向污染物排毒的生化反应的进展。因此,生物修复过程仅适用于可以维持生命的环境。微生物只有在污染物中可以使用各种材料化合物来帮助它们提取营养和能量以构建更多细胞时作用于污染物。在很少的情况下,在受污染部位存在的自然条件提供了足够大量的所有必需材料,可以在没有人类干预的情况下进行生物修复 - 一种称为固有生物修复的过程。经常使用,生物修复需要工程系统来构建工程系统来供应微生物刺激材料 - 一种称为工程生物修复的工艺。工程生物修复纯粹取决于通过鼓励更多生物体的生长以及优化生物体必须进行解毒反应的环境来加速所需的生物降解反应。微生物的代谢特征与对象污染物的物理化学特性相关,决定了特定的微生物 - 污染物相互作用是否可能。然而,两者之间的实际成功相互作用取决于
摘要遗传物质的稳定性和完整性对于维持和延续生活至关重要。人类基因组由三十亿对碱基组成,编码30,000-40,000个基因,并不断受到内源性反应性代谢产物,治疗药物和众多影响其完整性的环境诱变药物的攻击。因此,很明显,基因组的稳定性必须在连续监测之下。这是通过DNA修复机制实现的,DNA修复机制已开发出来去除或耐受DNA损伤和误差。在生物体中存在的DNA修复机制中,它们可以分为:i)基础切除修复(BER),ii)核苷酸切除(NER),iii)基本MALPASE(MMR)和IV)DNA修复,通过非同型末端(NHEJ)。对于这些机制正常工作,很明显,负责修复功能的蛋白质之间相互作用的重要性,以及对负责提到的机制的蛋白质正确位置的核进口调节。在负责调节核进口的机制中,由进口异二聚体α/β组成的经典途径是位移的主要机制之一。某些修复蛋白似乎仅与进口α(IMP)的某些同样蛋白相互作用,表明对修复过程的额外调节,但对这些蛋白质的核位置序列(NLS)的识别知之甚少。通过这些结果,阐明了包含NLSS KU80和FEN1的结构。这项工作特别涉及使用晶体学技术与蛋白质相关DNA修复的NLSS肽的IMP复合物的结构复合物的研究。进行了在其N末端部分截断的Musculus印象的表达和纯化,以及与DNA相关蛋白的NLS肽的IMP偶然化,对应于KU80,PMS2和MLH1蛋白质和MLH1蛋白质和BIPARTARTARTARTATTITE序列的单型序列。X射线衍射数据,并以2.1-2.38Å的分辨率进行处理。肽NLS KU80与NHEJ修复有关,与主连接位点上的IMPα相似,类似于SV40 T抗原的NLS(S 1)。已经与ber修复有关的NLS FEN1肽与Sitia S 1和次级位点(S 2)有关,证明是两部分序列。此外,仅具有10种废物的Fen1肽接头区域使与IMPα的联系更好,并且与具有11-12废物的肽的连接相比,与IMPα的连接更扩展,可能更有利的构象。在连接位点上的特定位置被确认为必不可少的,以及在这些区域中保守的残留物,表明这些位点中分子间相互作用的重要性。此信息表明这些蛋白质可以通过IMP-α独立运输到核心,而无需与有关修复的其他蛋白质形成复合物。关键字:进口α,核进口,NLS,射线晶体学-X,KU80,FEN1,PMS2,MLH1。
基础设施中的抽象表面裂纹如果没有有效维修,可能会导致明显的恶化和昂贵的维护。手动修复方法是劳动力密集的,耗时的,不精确的,因此很难扩展到大面积。尽管机器人感知和操纵的进步已经进行了自主裂纹修复的进展,但现有方法仍然面临三个关键挑战:(i)在机器人的坐标框架内准确定位裂缝,(ii)对改变裂纹深度和宽度的适应性,以及(iii)在现实情况下对修复过程的验证。本文使用具有先进感应技术的机器人技术提出了一种自适应的自主系统,用于表面裂纹检测和修复,以增强人类的精度和安全性。系统使用RGB-D摄像头进行裂纹检测,用于精确测量的激光扫描仪以及用于材料沉积的挤出机和泵。为了应对关键挑战之一,激光扫描仪用于增强裂纹坐标以进行准确定位。此外,我们的方法表明,一种自适应裂纹填充方法比固定速度方法更有效,更有效,实验结果证实了精度和一致性。此外,为了确保现实世界的适用性和测试可重复性,我们使用3D打印的裂纹标本引入了一种新颖的验证程序,以准确模拟现实世界中的条件。关键字:机器人基础设施维护裂纹维修自适应维修最终效果设计计算机视觉1.这项研究通过证明自适应机器人系统如何减少对手动劳动的需求,提高安全性并提高维护操作的效率,最终为更复杂和集成的建筑机器人铺平道路,从而为建筑中人类机器人相互作用的发展贡献。在基础设施维持领域的引入,有效的检测和修复表面裂纹是最持久和最具挑战性的问题之一。表面裂纹通常是非结构性的,但由于水分或化学入口而导致长期恶化。随着时间的流逝,这些次要缺陷可能会传播并在结构上显着,可能导致昂贵的维修甚至灾难性的失败。传统的裂纹维修方法,例如倒入,填充,密封,压力倾泻和挖掘挖掘[1],在很大程度上依赖手动劳动,并且通常会导致不一致的维修质量,同时带来了主要的安全风险。此外,手动裂纹维修可能是一个耗时的过程,可能会导致受影响社区的恢复的重大延迟。,例如,从2016年到2018年,旧金山国际机场跑道的地表裂纹维修直接占有近半百万美元,
摘要。目前,糖尿病的治疗及其并发症仍然是一个紧迫的问题。糖尿病综合征患者是糖尿病并发症的并发症,越来越多地失去其生活质量和工作能力。糖尿病的治疗及其并发症会影响我国的经济和财务效率。因此,在我国生产的新药物恢复有助于阻止脚的脓性菌质过程,这是糖尿病的并发症。关键词:糖尿病脚的实验模型,化脓性新生过程,实验动物,Alloxan,Reomannisol。实际上。糖尿病是胰腺绝对缺乏胰岛素引起的慢性疾病,胰腺导致体内代谢性疾病[6,7,8,17]。由于患者的死亡率很高,世界各地的科学家目前正在开发和使用各种药物[13,14,15]。用于在动物中使用新创建的药物,第一个问题是创建其模型[14,19,20,21]。这样的模型是Alloxan糖尿病模型。对人类慢性糖尿病足溃疡和化脓性疾病变化的病原体方面的研究很困难,并不总是可控制的[8,13,14,15]。慢性伤口的愈合受修复过程的一般原则和病理生理方面的影响。此过程取决于慢性伤口的发育阶段,伤口的深度,受损器官的基本结构,身体的一般状况以及治疗的类型[14,20,21,22]。目标。与糖尿病同时,伤口菌群在化脓性伤口的修复和再生过程中起作用。在糖尿病背景中发展为慢性化脓性溃疡,应使用哪种类型的局部治疗方法仍然是一个问题[8,13,14,15,16]。在糖尿病的Alloxan模型开发后,目标是开发一种新药,以纠正目标器官中侵犯肝保护性和抗氧化过程的行为[6,7,19,20]。Reomannisol是一种复杂的药物,具有抗氧化,抗氧化剂,Antishock,流变学,排毒,利尿特性。主要的活性成分是琥珀酸和甘露醇。绘制一种技术算法,用于治疗在复杂的实验性糖尿病脚综合征治疗后,在舞台上由糖尿病引起的脚脓性细胞病变。材料和方法。实验从2021年到2022年,对100只白色无菌雄性大鼠进行了实验研究,该大鼠的体重为180-200 g,并保存在塔什金特医学院的胎盘中。白天和黑夜每12小时观察到所有大鼠,它们被给予水以喝水,并保持在250-280°C的恒温下。实验动物分为4组:第1组完整(不变组);第二个对照组 - 使用传统的复杂处理在Alloxan糖尿病的背景下创建糖尿病脚的实验模型;第三实验组 - 根据糖尿病脚的实验模型 - 传统治疗和rheosorbilactyl;第4组 - 实验组号2-传统治疗和风湿性治疗[13]。
DNA损伤反应(DDR)与代谢之间的复杂相互作用,对管理基因组完整性维持的基本机制有深刻的了解[1]。细胞不断遇到诱导DNA损伤的内源性和外源性威胁,如果未修复,可能会导致突变,基因组不稳定性,并最终导致癌症等疾病[2]。代谢为DNA修复过程提供了必要的能量和构建块[3]。值得注意的是,DDR和代谢中的关键信号通路和酶促活性都紧密相关。例如,ATM和ATR激酶对DNA损伤的激活直接通过调节MTOR途径和细胞能量来直接影响细胞代谢状态[4]。此外,DNA修复酶(例如PARP1)与NAD+代谢相关,其活性会影响细胞生物能学[5]。DDR和代谢之间的这种复杂的串扰不仅确保基因组稳定性,而且还低估了细胞稳态在保护遗传信息中的重要作用,这使其成为对人类健康和疾病有深远影响的关键研究领域。本期特刊介绍了DNA损伤反应和癌症代谢领域领先专家的九篇论文。这些论文重点介绍了特定DNA破坏药物的药代动力学和药效学分析的最新进展,以及在DDR中发现新因素和调节机制的发现,包括DNA修复,检查点途径,复制应激,细胞死亡,细胞死亡和癌症代谢。Park等。Park等。此外,这些论文阐明了这些系统之间复杂的串扰,为基因组稳定性和针对DNA损伤的细胞代谢的广泛景观提供了宝贵的见解。在依托泊苷(ETO)处理中探究锌纤维蛋白Zatt的作用,揭示其在修复拓扑异构酶II(TOP2)的双重功能 - DNA共价复合物(TOP2CC)并在ETO治疗后促进细胞存活。ETO稳定瞬态top2cc,导致DNA双链断裂(DSB)。TOP2CC的修复涉及酪酶-DNA磷酸二酯酶2(TDP2),它从DSB的5'末端去除磷酸酪糖基肽。这项研究采用了全基因组CRISPR筛选,并证明Zatt在ETO处理后促进细胞存活中起着至关重要的作用,与TDP2-KO细胞相比,Zatt敲除(KO)细胞显示对ETO的敏感性提高。对Zatt的结构方面的进一步研究表明,N末端1-168残基对于与TOP2相互作用至关重要,显着影响ETO敏感性。在ETO或环己二酰亚胺处理后加速了TOP2降解,表明其在提高TOP2稳定性的作用,并可能导致TOP2周转率。这些发现表明,Zatt是对ETO治疗的反应的关键决定因素,其承诺是增强ETO在癌症治疗中效率的策略。Yeom等。 研究了与DNA聚合酶η相关的三种人Polh种系变体的功能特性,DNA聚合酶η是一种关键酶,负责无错误的跨性别DNA合成(TLS)。Yeom等。研究了与DNA聚合酶η相关的三种人Polh种系变体的功能特性,DNA聚合酶η是一种关键酶,负责无错误的跨性别DNA合成(TLS)。这些变体与易皮肤癌的结合(即,静脉表色素变体(XPV))和对顺铂的敏感性增加。生化和基于细胞的测定法用于评估这些种系的影响
发酵是一种古老的食品加工技术,已经存在了很长时间。这是一个过程,例如酵母或细菌等微生物分解有机物,产生能量并改变其化学结构。例如,酵母将糖转化为酒精,而某些微生物将碳水化合物变成乳酸或其他化合物。发酵没有氧气,这意味着能量是由碳水化合物制成的,而不是像有氧呼吸一样被燃烧以产生能量。这个过程并不那么高效 - 它仅产生大约有氧呼吸所提供的能量的5%。发酵背后的主要原理是在周围没有氧气时从碳水化合物中获取能量。它始于糖酵解,其中葡萄糖被部分氧化成丙酮酸。然后,这种丙酮酸可以变成酒精或酸,同时,NAD+再生,因此可以通过糖酵解帮助更多的ATP。发酵使用厌氧生化途径来产生能量,但其效率低于有氧呼吸。发酵涉及各种生物,例如实验室(乳杆菌,乙酰杆菌和芽孢杆菌)细菌,酵母和霉菌。这些微生物可以根据其进行的发酵类型将葡萄糖转化为不同的化合物。有两种主要类型:乳酸均质化,其中葡萄糖转化为乳酸和乳酸异,这会导致乳酸,乙酸,乙醇,二氧化碳和水等产物的混合物。这些细菌发酵葡萄糖成乳酸,乙醇/乙酸和二氧化碳作为副产品。同型的一个例子是乳酸链球菌将葡萄糖分解成乳酸,在此过程中产生两个ATP分子。另一方面,一些酵母菌物种,例如糖酵母将丙酮酸转化为乙醇(乙醇),在此过程中再生NAD+。发酵是粮食生产和能源创造的至关重要的技术,但根据所涉及的微生物,它具有自己的一套规则和结果。leuconostoc,oenococcus,Weissella以及异乳乳杆菌参与了这一过程。3。丙酸发酵:葡萄糖通过一系列由丙酸杆菌和丙梭菌催化的生化反应分解为乳酸,丙酸,乙酸,二氧化碳和水。当糖可用并产生丙酮酸时,将使用EMP途径,然后将其转化为草乙酸盐,然后通过苹果酸,富马酸盐和琥珀酸酯降低至丙酸。乙酸和二氧化碳是这种发酵过程的另一个最终产物。4。二乙酰基和2,3-丁基乙二醇发酵:二乙酰基的产生与柠檬酸相关,而2,3-丁二醇的产生涉及双脱羧的步骤,该辅助辅助步骤由细菌属于肠子肠细菌,Erwinia,erwinia,hafnia,hafnia,klebsiella and klebsiella and serratia和serratia和serratia。5。酒精发酵:葡萄糖通过酒精发酵转化为乙醇,这是所有发酵过程中最著名的。通过酵母,某些真菌和细菌进行此过程,丙酮酸通过酵母中的EMP途径以及Zymomonas中的ED途径形成。6。丁酸发酵:梭状芽胞杆菌属的几种强制性厌氧细菌进行丁酸发酵,将葡萄糖与二氧化碳和二氧化碳和H2一起转化为乙酸,作为副产物。这些细菌中的一些产生较少的酸和更多中性产物。应用: - 抗生素的产生 - 胰岛素的产生 - 生长激素的产生 - 疫苗的产生 - 食品工业中干扰素的产生,发酵被用于生产: - 发酵食品: - 奶酪,葡萄酒,葡萄酒,啤酒和面包等发酵食品,例如高价值产品 - 食品级生物保护剂 - 各种食品的生物量 - 其他中心蛋白质 - 单个中心蛋白质蛋白质 - 单一的蛋白质蛋白质,源自单一的蛋白质,源自单一的蛋白质,生物燃料(生物柴油,生物乙醇,丁醇,生物氢),以及用于土壤和废水的生物修复过程的发展。发酵的局限性包括低规模的生产,需要高成本和能耗,以及污染的可能性。此外,自然变化可能导致需要进一步治疗的杂质,从而导致意外的最终产物。均质细菌主要将糖转化为乳酸,而杂种细菌产生了一系列化合物,包括乙醇,二氧化碳等。参考:Admassie,M。(2018)。关于食品发酵和乳酸细菌生物技术的综述。世界食品科学技术杂志,第2(1)期,19。Ciani,M.,Comitini,F。和Mannazzu,I。(2018)。发酵。生态百科全书,310–321年6月。36,第6期,pp。Ghosh,B.,Bhattacharya,D。和Mukhopadhyay,M。(2018)。将发酵技术用于增值工业研究。发酵技术的原则和应用,8月141日至161日。Hind,H。L.,&Day,F。E.(1930)。发酵行业。酿酒研究所杂志,第1卷。1–29。Landine,R。,De Garie,C。,&Cocci,A。(1997)。发酵过程。生物技术进步,15(3-4),702。Martínez-Espinosa,R。M.(2020)。 介绍性章节:关于下一份发酵和挑战的简要概述。 发酵过程的新进展。 Microbiology,F。(2016)。 食品发酵的基本原理。 食品微生物学:实践原理,228-252。 发酵技术的原则和应用。 (2018)。 Sharma,R.,Garg,P.,Kumar,P.,Bhatia,S.K。,&Kulshrestha,S。(2020)。 微生物发酵及其在发酵食品质量改善中的作用。 发酵,6(4),1-20。 关于作者:细菌在食品发酵,环境可持续性和行业发展中起着至关重要的作用。 他们将糖转换为各种产品,影响风味,质地和燃料生存能力。 同型细菌主要通过糖酵解途径产生乳酸。 关键特征包括单一初始产品生产和有效的代谢过程。 这些微生物在厌氧条件下壮成长,通常在低氧环境中发现。Martínez-Espinosa,R。M.(2020)。介绍性章节:关于下一份发酵和挑战的简要概述。发酵过程的新进展。Microbiology,F。(2016)。食品发酵的基本原理。食品微生物学:实践原理,228-252。发酵技术的原则和应用。(2018)。Sharma,R.,Garg,P.,Kumar,P.,Bhatia,S.K。,&Kulshrestha,S。(2020)。微生物发酵及其在发酵食品质量改善中的作用。发酵,6(4),1-20。关于作者:细菌在食品发酵,环境可持续性和行业发展中起着至关重要的作用。他们将糖转换为各种产品,影响风味,质地和燃料生存能力。同型细菌主要通过糖酵解途径产生乳酸。关键特征包括单一初始产品生产和有效的代谢过程。这些微生物在厌氧条件下壮成长,通常在低氧环境中发现。属的例子包括乳杆菌,链球菌和肠球菌。杂化细菌使用发酵糖的磷酸酶途径,生产多种产物,包括乳酸,乙醇,二氧化碳和乙酸。这种多功能性使它们对于发酵食品中的复杂风味和质地生产很有价值。代谢途径的比较揭示了同型和杂种细菌之间的关键差异。糖酵解途径是直接有效的,而磷酸化酶途径则产生来自各种糖的产物混合物。二氧化碳在酵中起着至关重要的作用,而乙醇则有助于各种产品中的口味发展。ATP产生效率比较,同型细菌在将葡萄糖转化为ATP方面更有效。 通常,这些细菌会产生每个葡萄糖分子代谢的两个ATP分子。 相比之下,由于副产品产生的能量损失,异位细菌通常产生的ATP较少。 在乳制品和乳制品行业中的作用,同型细菌对于产生酸奶和某些类型的奶酪至关重要,在需要高浓度的乳酸。 他们可预测的发酵过程可确保产品质量和口味一致。 杂种细菌用于需要较慢的酸化和更复杂的口味以及酸面团生产的奶酪中。 它们的发酵五胃能力使其非常适合用木质纤维素生物量生产生物燃料,木质纤维素生物量丰富且与食物来源不竞争。ATP产生效率比较,同型细菌在将葡萄糖转化为ATP方面更有效。通常,这些细菌会产生每个葡萄糖分子代谢的两个ATP分子。相比之下,由于副产品产生的能量损失,异位细菌通常产生的ATP较少。在乳制品和乳制品行业中的作用,同型细菌对于产生酸奶和某些类型的奶酪至关重要,在需要高浓度的乳酸。他们可预测的发酵过程可确保产品质量和口味一致。杂种细菌用于需要较慢的酸化和更复杂的口味以及酸面团生产的奶酪中。它们的发酵五胃能力使其非常适合用木质纤维素生物量生产生物燃料,木质纤维素生物量丰富且与食物来源不竞争。对乙醇和其他富尔斯植物类型的细菌的贡献参与生物燃料的产生,但异质细菌具有明显的优势,因为它们能够直接从发酵中产生乙醇。关键基因涉及发酵细菌的基因组成显着影响其发酵途径和效率。关键基因(例如同型细菌中的糖酵解酶和异源细菌中的磷酸酶途径)起着至关重要的作用。这些基因决定了代谢不同糖并产生不同副产品的能力。pH,温度和养分的影响发酵细菌的性能受到环境因素(例如pH,温度和可用养分)的严重影响:pH:两种类型的细菌通常在略微酸性的pH下繁殖,从而提高其生长和发酵效率。杂菌细菌倾向于具有更广泛的pH耐受性,从而有助于其多功能性。温度:最佳温度范围对于最大酶活性和生长至关重要。均质细菌偏爱30-40°C的温度,而异源细菌可以耐受温度范围的温度。工业发酵依靠特定的细菌菌株来生产所需的产品。营养的可用性会影响生长速率和代谢途径,并提供足够的供应,从而导致了强大的发酵过程。乳制品发酵展示了特异性影响:乳杆菌Delbrueckii亚种。保加利亚和嗜热链球菌有助于酸奶的风味和快速酸化。Brevis乳杆菌用于特种奶酪的生产中,通过乳酸,乙醇和二氧化碳生产产生复杂的口味。杂种细菌在生物燃料生产中发现了一个小众,将糖直接发酵成乙醇。Leuconostoc Mesenteroides的创新菌株已经过基因修饰,以提高乙醇产量,从而展示了可持续燃料生产的潜力。污染是一个重大挑战;常规的灭菌和封闭的发酵系统最大程度地降低了风险。菌株选择和遗传修饰会产生更强大的应变,使污染因子越发。优化发酵过程涉及诸如基因工程,过程优化以及对更好菌株的潜在修改等策略。基因工程可以提高糖的摄取和发酵效率,而过程优化可以调整参数以优化细菌的生长和生产力。发酵细菌的未来发展集中在基因工程上:发展具有较高浓度乳酸的耐受性的同质菌株可能会彻底改变生物塑料行业。工程杂化细菌可提高乙醇产量和其他有价值的副产品,将推动生物燃料和特种化学物质的创新。两种发酵细菌在环保解决方案中都起着关键作用:使用农业和食品工业的废物基板作为发酵的原料减少浪费并增强可持续性。生物技术方法的进步将继续提高这些细菌的效率和环境影响。细菌在可持续行业实践中起着至关重要的作用,同型和异性细菌是核心人物。同型细菌通过直接的代谢途径将糖转化为乳酸,导致高产和最小的副产品,使其适合乳制品和食品发酵。相比之下,杂菌细菌将糖代谢为各种副产品,包括乳酸,乙醇和二氧化碳,使它们可以在更广泛的发酵过程中使用,这些发酵过程需要复杂的口味和质地,例如某些奶酪和酸娃娃。由于步骤较少,能量损失较少,将糖转化为乳酸中同型细菌的能效较高,而杂菌细菌在单个过程中产生各种化学物质的能力被重视。两种细菌在食品工业中都是必不可少的,尤其是在乳制品和烘焙中,同型细菌对于生产酸奶和一些奶酪至关重要,而异性细菌在制造Kefir和Sauerkraut等产品方面起着关键作用。此外,他们正在探索它们在生物燃料生产中的潜力,尤其是将生物量转化为乙醇的潜力。这些细菌的利用代表了传统和创新行业的重要领域,提供了优化产品品质(例如风味,质地和营养价值)的机会,同时也有助于可持续实践和生物燃料开发。随着研究继续发现新的应用并改善了现有流程,这些微生物发电厂的未来看起来很有希望,并通过提高效率和可持续性对行业,消费者和环境带来了潜在的好处。