地球.8.E 解释板块构造如何解释地质过程,包括海底扩张和俯冲,以及海脊、裂谷、地震、火山、山脉、热点和热液喷口等特征;地球.8.C 研究新的数据概念解释和创新地球物理技术如何导致当前的板块构造理论;地球.8.F 使用与速率、时间和距离相关的方程式计算板块的运动历史,以预测未来的运动、位置和由此产生的地质特征;地球.8.G 使用地震和火山分布的证据来区分汇聚、发散和变换板块边界的位置、类型和相对运动;地球.8.H 评估板块构造在地球子系统的长期全球变化中的作用,例如大陆沉积、冰川作用、海平面波动、大规模灭绝和气候变化。 Astro.5.B 研究和评估包括托勒密、哥白尼、第谷·布拉赫、开普勒、伽利略和牛顿在内的科学家的贡献,因为天文学从地心模型发展到日心模型;Astro.16.E 研究和描述天文学的当前发展和发现;
第 1 章:介绍................................................................................................1 飞机......................................................................................................................1 组织...................................................................................................................1 维护...................................................................................................................2 飞行测试...................................................................................................................2 飞行许可...................................................................................................................3 测试理念................................................................................................................3 第 2 章:背景......................................................................................................5 飞机问题.............................................................................................................5 对机队的影响......................................................................................................6 主起落架描述.............................................................................................................7 主起落架.............................................................................................................7 主起落架舱门.........................................................................................................8 可能的致病因素............................................................................................8 过心距离.........................................................................................................8 飞机飞行过程中上锁滚轮和闩锁的动态机动................................................................................................................9 机械干扰......................................................................................................9 摩擦......................................................................................................................10 机轮负重接近开关故障........................................................................11 仪器................................................................................................................12 液压管路.............................................................................................................13 摄像系统.............................................................................................................13 用于控制起落架选择阀电压的驾驶舱控制开关.....13 加速度计模块.............................................................................................14 第 3 章:测试执行和结果....................................................................................15 测试范围.............................................................................................................15 测试方法........................................................................................................................................................16 结果与评估................................................................................................17 地面测试..............................................................................................................17 部件安装..............................................................................................................17 过中心距离..............................................................................................................19 飞行测试................................................................................................................20 上弦转弯.............................................................................................................21 完成代表性修订版 A 的 AFC 266 和 267 上弦转弯(配置 A).............................................................................22 从右侧上锁移除 AFC 266 的上弦转弯(配置 B).............................................................................................23 功能检查飞行俯冲剖面图.............................................................................................24 液压峰值测试.............................................................................................25 第四章:组织对测试结果的影响.....................................................................27
2018 年 2 月 28 日 10:02 1,爱沙尼亚 Smartlynx 航空公司空客 A320-214(注册号 ES-SAN)从爱沙尼亚塔林机场起飞,进行训练飞行,机上有 2 名机组人员(机长和安全飞行员)、4 名学生和 1 名 ECAA 检查员。在成功进行几次 ILS 进近和触地复飞循环之后,于 15:04,飞机成功接地跑道,但在达到抬头速度时,飞机没有按预期对侧杆输入做出反应。短暂起飞后,飞机失去高度并在跑道尽头附近坠毁。在撞击中,飞机发动机撞到跑道,起落架舱门受损。在最初的撞击后,飞机从地面爬升至 1590 英尺并再次俯冲。飞行员能够通过手动俯仰配平和发动机推力来稳定飞行路径,并掉头返回跑道。机组宣布紧急降落,飞机获准紧急降落。在进近过程中,飞机的两个发动机都失去了动力。飞机于 15:11 在跑道入口前 150 米处着陆。着陆时,飞机轮胎爆裂,飞机偏离跑道,最后在跑道左侧 15 米处停下。安全飞行员和其中一名学生在这次事故中受到轻微撞击创伤。飞机起落架舱门、起落架、两个发动机舱、发动机和飞机机身在这次事故中受到严重损坏,导致机身损毁。
摘要 2008 年 10 月 7 日,一架空客 A330-303 飞机(注册号 VH-QPA,航班号为澳航 72)从新加坡起飞,执行定期客运服务,飞往西澳大利亚珀斯。当飞机在 37,000 英尺的高度巡航时,飞机的三个大气数据惯性参考装置 (ADIRU) 之一开始向其他飞机系统输出所有飞行参数的间歇性错误值(尖峰)。两分钟后,由于迎角 (AOA) 数据出现尖峰,飞机的飞行控制主计算机 (FCPC) 命令飞机俯冲。机上 303 名乘客中至少有 110 人和 12 名机组人员中有 9 人受伤;其中 12 名乘客受重伤,另有 39 人送往医院接受治疗。虽然 FCPC 算法处理 AOA 数据通常非常有效,但它无法处理一个 ADIRU 的 AOA 出现多个峰值且间隔 1.2 秒的情况。该事件是 A330/A340 飞机超过 2800 万飞行小时中唯一已知的因该设计限制导致俯冲命令的例子,飞机制造商随后重新设计了 AOA 算法,以防止再次发生相同类型的事故。每个间歇性数据峰值可能都是在 LTN-101 ADIRU 的中央处理器 (CPU) 模块将一个参数的数据值与另一个参数的标签相结合时产生的。故障模式可能是由
给这些贴上标签(见第 23 页) I、布里斯托尔“布伦海姆 IV”;2、波音 B-17E“堡垒”;3、道格拉斯 DB-7 波士顿 III;4、梅塞施密特 Me 109G;5、肖特斯特林 IV;6、梅塞施密特 Me 410;7、通用飞机公司哈姆尔卡;8、联合 B-24D“解放者”;9、道格拉斯 A-20“浩劫”;10、北美 BT-I4“耶鲁”;II、费尔雷“萤火虫”I;12、格鲁曼 TBF-I“复仇者”;13、波音 B-17G“堡垒”;14、布鲁斯特 F2A-2“水牛”;15、道格拉斯 DB-7 波士顿 III;16、北美 B-25“米切尔”;17、马丁 B-26“劫掠者”; 18、柯蒂斯 SB2C 地狱俯冲者;19、格鲁曼野猫;20、波音 13-29 超级堡垒;21、伊柳钦 IL-2;22、法尔雷梭鱼 II。可辨别的细节(见第 22 页)1、共和 P-47 雷电;2、沃特-西科斯基 OS2U-3 翠鸟;3、马丁 B-26 掠夺者;4、北美 B-25 米切尔;5、韦科 CG-4A 哈德良;6、联合 B-24 解放者;7、泰勒克拉夫特奥斯特 IV;8、超级马林喷火式战斗机 F.XII;9、霍克台风 Ib;10、阿弗罗兰开斯特 I;II、阿弗罗约克;12、道格拉斯 A-26 入侵者; 13、诺斯罗普 P-6I“黑寡妇”;14、费尔雷“梭鱼”;IS、梅塞施密特 Me. 410;16、容克斯 Ju 87;17、图波列夫 TB-7;18、MBR-2;19、三菱 OB-01“贝蒂”。
摘要 空间大地测量已经彻底改变了我们对北安第斯山脉和西南加勒比海区域构造的认识。中美洲和南美洲 GPS 项目始于 1988 年,首次直接测量了汇聚板块边界的俯冲,并促成了全球民用 GPS 跟踪网络的建立。哥伦比亚是 1988 年实地活动的中心,哥伦比亚地质服务局在后勤、培训和人员方面的领导是中美洲和南美洲项目成功的关键。早期 GPS 结果显示北安第斯山脉向北移动、南加勒比海变形带汇聚、巴拿马-北安第斯山脉快速碰撞以及哥伦比亚-厄瓜多尔海沟的震间“锁定”的证据。从 2007 年开始,空间大地测量随着 GeoRED 项目向前迈出了一大步,GeoRED 是一个持续运行的全球导航卫星系统网络,目前拥有 108 个站点,提供了北安第斯块体运动的第一个精确的综合模型。 GeoRED 的最新发现包括北安第斯块体正以每年 8.6 毫米的速度向东北移动,东科迪勒拉山脉正以每年 4.3 毫米的速度受到挤压,巴拿马弧正以每年约 15-18 毫米的速度向东与北安第斯块体碰撞,而巴拿马-乔科碰撞可能是东科迪勒拉山脉大部分隆升的原因。新的全球导航卫星系统连续测量有助于量化南美洲西北部和加勒比海西南部的构造变形,包括哥伦比亚海沟、加勒比海边缘、东科迪勒拉山脉的东安第斯断层系统和哥伦比亚西北部巴拿马碰撞带的地震危险;以及哥伦比亚火山的变形。
令人悲伤的是,战争加速了技术和机械进步的步伐,二战期间的军事航空尤其如此。1940 年,英国剑鱼式鱼雷轰炸机(一种起源于 20 世纪 30 年代的双翼设计)在对抗德国 U 型潜艇、海军舰艇和船舶的行动中表现出色,但不到五年,到 1944 年夏天,英国皇家空军就部署了流星喷气式战斗机对抗英格兰南部上空的敌方 V1 飞行炸弹。同样,在德国,德国空军继续使用 Hs 123 双翼俯冲轰炸机和对地攻击机,这些飞机首次出现在西班牙内战中,直到 1945 年,此时 Me 262 和 Ar 234 喷气式拦截机、轰炸机和侦察机正在与前线部队一起执行飞行任务。发动机开发在战争初期也经历了前所未有的发展,但同时也面临挑战。1942 年 12 月,英国的 D. Napier & Son 发动机工程公司被英国电气集团收购,在前皇家飞行队 (RFC) 飞行员 Frank Halford 少校的监督下,该公司从 1930 年开始设计和生产了一系列三款“H”型航空发动机,它们的四冲程阀门设计各不相同。该系列以刀刃武器命名,最终于 1937 年问世,推出了 24 缸水冷式 Sabre 发动机,该发动机采用斜齿轮驱动套筒阀,功率为 3,000 马力。到 1941 年,Napier Sabre 已被指定安装到计划中的 Hawker Typhoon 战斗机上,该战斗机旨在取代喷火战斗机和飓风战斗机。然而,该项目早期就存在问题,不可靠性表现为“佩刀”动力不足和“台风”机动性不足。尽管如此,通过事故、时机好坏、运气、竞争不足和持续改进等多种因素,
1911 年 1 月 18 日,尤金·伊莱(1886-1911)成功将一架飞行器降落在停泊在旧金山湾的美国宾夕法尼亚号战列舰上。临时飞行甲板由一个木制平台(30 英尺 x 120 英尺)组成,建在装甲巡洋舰的船尾。甲板向上倾斜 2°,系在拦阻索上的沙袋为时速 40 英里的飞行器提供了必要的减速。着陆后,伊莱先生说:“这很容易。我认为这个技巧十有八九可以成功。”幸运的是,一些早期的海军飞行员认为十有八九还不够好,通过他们的努力,随着时间的推移,航母着陆实际上变得更加容易和安全。伊莱先生驾驶的是柯蒂斯 D 型推进式双翼机(翼展 38 英尺 -3 英寸)。与莱特飞行器类似,它的主要区别在于使用副翼而不是机翼扭曲来控制滚转。然而,伊莱先生不会游泳。除了戴着橄榄球头盔,他还穿着自行车内胎以便漂浮。他的飞行器有一个拦阻钩和漂浮罐。着陆后,甲板船员将飞行器掉头,57 分钟后,伊莱先生毫无困难地起飞并飞回岸边。1910 年 11 月 14 日,伊莱先生从汉普顿锚地的伯明翰号航空母舰上的一个较小平台起飞,但恶劣的天气影响了这次早期的飞行。他差点坠入水中,但奋力飞上天空,成功降落在附近的海滩上。1911 年 10 月 19 日,这位首位航母飞行员在参加佐治亚州梅肯的飞行表演时,他的飞行器坠毁身亡。他俯冲时拉起得太晚了。1933 年,国会追授尤金·伊莱杰出飞行十字勋章
1911 年 1 月 18 日,尤金·伊莱(1886-1911)成功将一架飞行器降落在停泊在旧金山湾的美国宾夕法尼亚号战列舰上。临时飞行甲板由一个木制平台(30 英尺 x 120 英尺)组成,建在装甲巡洋舰的船尾。甲板向上倾斜 2°,系在拦阻索上的沙袋为时速 40 英里的飞行器提供了必要的减速。着陆后,伊莱先生说:“这很容易。我认为这个技巧十有八九可以成功。”幸运的是,一些早期的海军飞行员认为十有八九还不够好,通过他们的努力,随着时间的推移,航母着陆实际上变得更加容易和安全。伊莱先生驾驶的是柯蒂斯 D 型推进式双翼机(翼展 38 英尺 -3 英寸)。与莱特飞行器类似,它的主要区别在于使用副翼而不是机翼扭曲来控制滚转。然而,伊莱先生不会游泳。除了戴着橄榄球头盔,他还穿着自行车内胎以便漂浮。他的飞行器有一个拦阻钩和漂浮罐。着陆后,甲板船员将飞行器掉头,57 分钟后,伊莱先生毫无困难地起飞并飞回岸边。1910 年 11 月 14 日,伊莱先生从汉普顿锚地的伯明翰号航空母舰上的一个较小平台起飞,但恶劣的天气影响了这次早期的飞行。他差点坠入水中,但奋力飞上天空,成功降落在附近的海滩上。1911 年 10 月 19 日,这位首位航母飞行员在参加佐治亚州梅肯的飞行表演时,他的飞行器坠毁身亡。他俯冲时拉起得太晚了。1933 年,国会追授尤金·伊莱杰出飞行十字勋章
1911 年 1 月 18 日,尤金·伊莱(1886-1911)成功将一架飞行器降落在停泊在旧金山湾的美国宾夕法尼亚号战列舰上。临时飞行甲板由一个木制平台(30 英尺 x 120 英尺)组成,建在装甲巡洋舰的船尾。甲板向上倾斜 2°,系在拦阻索上的沙袋为时速 40 英里的飞行器提供了必要的减速。着陆后,伊莱先生说:“这很容易。我认为这个技巧十有八九可以成功。”幸运的是,一些早期的海军飞行员认为十有八九还不够好,通过他们的努力,随着时间的推移,航母着陆实际上变得更加容易和安全。伊莱先生驾驶的是柯蒂斯 D 型推进式双翼机(翼展 38 英尺 -3 英寸)。与莱特飞行器类似,它的主要区别在于使用副翼而不是机翼扭曲来控制滚转。然而,伊莱先生不会游泳。除了戴着橄榄球头盔,他还穿着自行车内胎以便漂浮。他的飞行器有一个拦阻钩和漂浮罐。着陆后,甲板船员将飞行器掉头,57 分钟后,伊莱先生毫无困难地起飞并飞回岸边。1910 年 11 月 14 日,伊莱先生从汉普顿锚地的伯明翰号航空母舰上的一个较小平台起飞,但恶劣的天气影响了这次早期的飞行。他差点坠入水中,但奋力飞上天空,成功降落在附近的海滩上。1911 年 10 月 19 日,这位首位航母飞行员在参加佐治亚州梅肯的飞行表演时,他的飞行器坠毁身亡。他俯冲时拉起得太晚了。1933 年,国会追授尤金·伊莱杰出飞行十字勋章