这项荟萃分析证明了将人工智能算法与传统设计方法相结合对优化 1.5MW DFIG 风力涡轮机叶片的有效性。该研究成功解决了风力涡轮机设计中涉及多个相互竞争的目标的复杂问题,例如空气动力学效率、结构完整性和经济可行性。借助先进的优化算法,特别是灰狼优化方法,设计结果和计算效率得到了显著改善。优化后的叶片设计重量减轻了 8%,同时提高了结构耐久性和空气动力学性能。组合叶片设计的功率系数增加到 0.27,表明风力涡轮机的效率有可能提高,尤其是在低风速范围内,任何效率的提高都对整体能量捕获至关重要。
摘要 - 在本文中,我们研究了在通用量子游戏中学习的广泛使用矩阵乘量(MMW)动力学的平衡收敛性和稳定性。这项努力的一个关键困难是,诱导的量子状态动力学自然地分解为(i)经典的,可交换性的成分,该动态以类似于在经典复制器动力学下的混合策略的演化方式控制系统特征值的动力学; (ii)系统特征向量的非交通分量。这个非交通性的组件没有经典的对应物,因此需要引入(渐近)稳定性的新颖概念,以说明游戏量子空间的非线性几何形状。在这种一般情况下,我们表明(i)只有纯量子平衡才能稳定并在MMW动力学下吸引; (ii)作为部分匡威的纯量子状态,满足某种“变分稳定性”条件的纯量子总是会吸引。这使我们能够充分表征在MMW动力学下稳定并吸引的量子NASH平衡的结构,这一事实对预测多代理量子学习过程的结果具有重要意义。
载流子倍增因子的特性是设计坚固可靠的功率半导体器件以及评估其对地面宇宙辐射引起故障的敏感性的关键问题。本文提出了一种低温恒温装置,以将使用来自 Am 241 放射源的软伽马辐射的非侵入式电荷谱技术应用于广泛的 Si 和 SiC 器件。本文提供了一种关系,将液氮温度下测得的倍增因子转换为环境温度下测得的倍增因子。本文提出了一种专用的模拟方案,将 TCAD 和 Monte Carlo 工具结合起来,以预测收集到的电荷的光谱并定位倍增因子的热点。最后,在强调了电荷倍增因子与地面宇宙辐射下的功率器件故障率之间的相关性之后,建议将本技术作为评估安全操作区的补充方法。
§ 量子效率有限(无雪崩倍增)§ 读出噪声(电路噪声)限制了最低可检测信号§ 积分时间长
2020 年 1 月 15 日 — 网络能力既不是静态的也不是线性的;它们可以随着战斗的进行而适应,并且与其他军事能力相结合,可能会产生倍增效应...
表征功率器件的击穿前行为对于故障机制的寿命建模至关重要,其中主要驱动力是碰撞电离。特别地,设计坚固的功率器件并定义其安全工作区需要定量表征反向偏置结中的电荷倍增。这对于像陆地宇宙射线产生的单粒子烧毁 (SEB) 这样的机制尤其必不可少,其中撞击辐射通过碰撞电离在反向偏置器件中产生大量电荷,该电荷被传输并最终通过局部电场倍增。对抗 SEB 的主要技术措施是在设计阶段进行现场定制以及在器件使用过程中降低反向/阻塞偏置。在这种情况下,通常使用载流子倍增开始的电压偏置作为定义工作条件下电压降额标准的标准 [1、2]。在实际应用中,降额系数通常在器件额定电压 V rated 的 50% 到 80% 之间。定义正确的降额系数至关重要。如果设置得太低,则需要具有更高 V 额定值的器件,从而导致更高的损耗和成本。相反,如果设置得太高,则导致的现场故障率可能变得过高。目前,降额系数是通过寿命测试或
• 鉴于其适度的有效载荷,A/R 无人机如果用于电磁战、持续 C2ISR 和其他利用其力量倍增潜力的非动能任务,则可能具有最大的战斗价值
摘要:在生物体的身体中,某些无机和有机化合物可以催化或抑制酶的活性。酶与这些化合物之间的相互作用是通过数学成功描述的。本文的主要目的是研究激活剂 - 抑制剂系统(Gierer – Meinhardt System)的动力学,该动力学用于描述化学和生物学现象的影响。使用分数衍生物考虑该系统,该系统使用符合分数衍生物的定义将其转换为普通衍生物。使用变量的分离来求解所获得的微分方程。分析并讨论了该系统所获得的正衡点的稳定性。我们发现,在某些条件下,这一点可以是局部渐近稳定的,源,鞍形或非纤维性的。此外,本文集中于探索Neimark-Sacker分叉和倍增分叉。然后,我们提出一些数值计算,以验证所获得的理论结果。这项工作的发现表明,管理系统在某些条件下经历了Neimark-Sacker分叉和倍增分叉。这些类型的分叉发生在小域中,如理论和数字上所示。说明了一些2D形式以可视化某些域中解决方案的行为。