Chiagozie Mbah 6 摘要 目的:本研究旨在增强射频 (RF) 能量收集的电压倍增器,重点是提高收集能量的效率。这一改进对于可持续能源应用和减少化石燃料造成的环境污染至关重要。 理论参考:射频能量收集技术正逐渐被认可为一种可行的可持续环境能量捕获方法,早期的研究主要集中在天线和电路设计上。尽管如此,能量收集的有效性仍然受到功率输出不足的限制。本研究在先前的研究基础上,直接比较了两种常用的电压倍增器,即 Cockcroft Walton 和 Dickson 倍增器,并将其应用于射频能量收集。 方法:使用 Multisim 对 Cockcroft Walton 和 Dickson 电压倍增器进行优化设计,并使用 MATLAB 分析其性能。比较是在两个频率范围内以 1V 的输入电压进行的:85 MHz – 110 MHz(FM 频段)和 1.8 GHz – 3.0 GHz(4G 频段)。记录了两个倍增器的输出电压,并在这些频带上进行了比较。结果与结论:在 FM 频带(85 MHz – 110 MHz)内输入电压为 1V 时,Dickson 电压倍增器的性能优于 Cockcroft Walton 倍增器,其输出电压为 11.1V,而 Dickson 为 6.6V。然而,在 4G 频带(1.8 GHz – 3.0 GHz)中,Cockcroft Walton 倍增器的效率更高,其最大输出电压为 5.2V,而 Dickson 为 4.1V。研究得出结论,Dickson 倍增器更适合从 FM 频带收集射频能量,而 Cockcroft Walton 倍增器更适合 4G 频带能量收集。研究意义:研究结果表明,不同的射频能量收集应用可能受益于不同的电压倍增器,具体取决于所涉及的频带。这可以指导未来旨在实现可持续能源解决方案的技术中更高效的射频能量收集电路的设计。原创性/价值:本研究直接比较了不同射频频率条件下的两个电压倍增器,为优化绿色能源应用的能量收集技术提供了宝贵的见解。研究结果有助于加深对特定射频频段高效电路设计的理解,有助于开发更有效的能量收集系统。关键词:电压倍增器、Cockcroft-Walton 电压倍增器、Dickson 电压倍增器、能量收集、射频。
本专著探讨了保障力量倍增器如何在和平时期应急行动中发挥作用以优化部队能力。力量倍增器的概念是美国陆军理论的一个关键要素,它主张我们可以用有限的资源作战并取得胜利。随着我们将重点从欧洲转移到世界其他地区,这一概念对于在资源受限的时代设计和规划复杂的和平时期应急行动将非常有价值。
就业等的变化是产生它的投资或政府支出变化的倍数。 在物理学中,“一种通过重复强化将力、电流等的强度乘以或增加到可察觉或可测量的值的工具。” 滑轮是四种用来做功并充当力倍增器的简单机器之一。 力倍增器在信息技术中的含义可以用质的、量的、有形的和无形的因素来表达。 任何能够提高能力和效率的东西也可以称为力倍增器。 办公自动化、职业规划、数据库管理、互联网、网络、战争游戏、模拟器、卫星、全球定位系统 (GPS)、遥控飞行器 (RPV)、监视设备、空中飞机加油等都是信息技术作为力倍增器的一些例子。 在威慑和毁灭方面,核、生物和化学战争充当了力倍增器。信息技术领域的空前发展催生了新的战争形式,即信息战。信息战能够充当超级力量倍增器,改变传统优势并获得绝对的信息优势。信息战:传输、转换、存储和获取是信息的四个特征,而中断、拒绝、利用、摧毁和保护是信息战的五个特征。信息战的普遍形式有:指挥和控制战、基于情报的战争、电子战、心理战、黑客战、经济信息战、网络战、媒体战等。在这方面,信息战在心理层面上的威力在冲突期间和和平期间均有体现,见附件 A。在信息战时代,我们需要拥有自己的信息基础设施并开发自己的信息系统,以便与发达国家处于同一平台。
中校维韦克·戈帕尔出生于 1980 年 3 月,来自旁遮普。2000 年,他从国防学院毕业后,获得了德里 JNU 的理学学士(电子学)学位。2000 年 12 月入伍,2007 年获得 JNU 的理学学士学位(电子学)。2011 年,他获得了 JNU 的理学硕士学位(电子工程)。作为一名伞兵,这名军官曾在作战领域的各种专业单位工作过。作为一名认证项目经理,他也是各种知名组织的成员。作为一名技术传播者,他正在攻读国防与战略研究哲学硕士学位。目前,他在一家顶级培训机构担任“讲师”。
无论您是首席执行官、首席财务官、转型领导者还是业务领导者,全球能力中心 (GCC) 或全球业务服务 (GBS) 的出现已不再仅仅是一个好主意。相反,它是组织运营战略中的关键战略杠杆,需要积极考虑,因为它对盈利能力、竞争力、组织敏捷性和创新能力具有重大影响。
未来的军民合作计划必须密切关注新颠覆性技术的特殊性(例如人工智能、量子计算等的出现)以及与频谱效率和共享相关的新挑战。航空技术范式正在迅速发展。完全数字化和高带宽的新一代空地数据通信、对卫星信号的依赖以及依赖于协调协议栈和标准化数据模型的分布式互联网协议连接将严重影响与军事系统的互操作性。随着其他行业争夺频谱,对频谱带的激烈竞争将加剧。
• 低振动和噪音水平。我们已采取措施使驾驶舱和客舱尽可能安静和无振动。在欧洲直升机公司,在空中飞行一天并不比坐在办公桌前一天更累。事实上,它们非常安静,以至于对噪音和振动特别敏感的狗可以在飞行后立即使用。• 速度。您到达犯罪现场的速度与任务的成功有很大关系。欧洲直升机公司的直升机都是各自重量级别中速度最快的。• 出色的可视性。驾驶舱和客舱设计有最大的窗户空间,以获得最佳可视性。监视任务和追捕不那么累人,因此人员保持更高的警觉性。在某些情况下,几架警用直升机可能在同一区域飞行,宽阔的视野使机组人员能够有效地处理飞行安全问题。
人工智能已经成为一个统称,指任何复制人类任务的机器行为,但要真正评估人工智能在战场或社会中的影响,必须更加具体。人工智能有两种子类型,即机器学习和深度学习。机器学习是指计算机在不被告知的情况下通过处理数据进行学习和改进,并使用统计数据进行概率分析,在某些情况下进行预测。1 深度学习是机器学习的一个子领域,它允许处理大量数据以找到人类可能无法检测到的关系和模式。2 虽然深度学习由于其复杂性而难以扩展,但机器学习在陆军系统中已经很常见。其中一个系统包括相控阵跟踪雷达拦截目标 (PATRIOT),它使用复杂的计算机和算法网络来跟踪来袭物体,将其分类为威胁或友军,并发射地对空导弹。3 陆军目前还在投资其他人工智能工具,如 Project Maven,“这是一种可以快速、有用地处理无人机镜头的工具。”4
摘要本文介绍了超高辐射模块化乘数的算法 - 硬件共同设计,用于高吞吐量模块化乘法。首先,为了加快模块化乘法的速度,我们使用一种新型的分段还原方法来利用超高的radix插入模块化乘法算法,从而减少了迭代和预计的数量。然后,为了进一步改善模块化乘法的吞吐量,我们设计了高度并行的模块化乘数体系结构。最后,我们使用Xilinx virtex-7 FPGA进行了并验证模块化乘数。实验结果表明,它可以在0.56 µs中执行256位模块化乘法,吞吐量速率高达4999.7 Mbps。关键字:模块化乘法,高吞吐量,超高radix分类:集成电路(内存,逻辑,模拟,RF,传感器)