西方世界经历了三千年的爆炸式发展,借助于零碎的机械技术,如今正走向内爆。在机械时代,我们已将身体延伸到太空。今天,在经历了一个多世纪的电气技术之后,我们已将我们的中枢神经系统本身延伸到全球范围,就我们这个星球而言,空间和时间都已消失。我们正迅速接近人类延伸的最后阶段——意识的技术模拟,届时,创造性的认知过程将集体地、集体地扩展到整个人类社会,就像我们已经通过各种媒介扩展了我们的感官和神经一样。(麦克卢汉,1964:25)。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
在本文中,我们借助于验证的语言模型研究了改进的命名者认同。首先,我们尝试了一种有监督的方法,其中每个说话者在训练数据中的话语的内容用于验证基于编码器的BERT风格的语言模型。接下来,我们探讨了大型生成语言模型,证明了他们在文本成绩单中执行零摄像人识别的能力。在两种情况下,我们都会尝试两种语言,包括Voxceleb1扬声器标识数据集和三个爱沙尼亚广播新闻和对话数据集。我们表明,大型语言模型可以在对话演讲中为命名者的识别表现提供戏剧性的证明,在这些演讲中,用他们的名字介绍说话者。此外,OpenAI GPT-4模型有时会通过人类的表现来回忆《爱沙尼亚人的说话者》成绩单。
我们既考虑离散变量系统,比如量子比特或其他具有有限维希尔伯特空间的量子系统,也考虑 CV 系统,比如用无限维希尔伯特空间描述的电磁场的玻色子模式。关于这两个一般领域有许多评论和书籍(例如,参见参考文献 [1, 2])。下面重复了一些概念。通用的“准备和测量” QKD 协议可以分为两个主要步骤:量子通信和经典后处理。在量子通信期间,发送者(Alice)将随机经典变量 α 的实例编码为非正交量子态。这些状态通过量子信道(光纤、自由空间链路)发送,窃听者(Eve)试图窃取编码信息。量子力学的线性不允许进行完美的克隆 [3, 4],因此 Eve 在扰乱量子信号时只能获取部分信息。在通信信道的输出端,接收者(Bob)测量传入信号并获得一个随机经典变量β。在多次使用该信道之后,Alice 和 Bob 共享由两个相关变量α和β描述的原始数据。远程方使用部分原始数据来估计信道的参数,例如其透射率和噪声。这个参数估计阶段非常重要,因为它可以评估从剩余数据中提取私人共享密钥的后处理量。根据这些信息,他们实际上执行了一个错误校正(EC)阶段,这使他们能够检测和消除错误,然后是隐私放大(PA)阶段,这使他们可以将 Eve 被盗的信息减少到可以忽略不计的数量。最终结果就是密钥。根据猜测的变量,我们可以进行直接或反向协调。在直接协调(DR)中,Bob 对其结果进行后处理以推断 Alice 的编码。这一过程通常借助于从爱丽丝到鲍勃的前向经典通信(CC)来实现。相反,在反向协调(RR)中,爱丽丝会对其编码变量进行后处理,以推断鲍勃的结果。这一过程通常借助于从鲍勃到爱丽丝的最后一轮反向通信来实现。当然,人们可以更普遍地考虑两种方式:
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
纯化mRNA后,将寡-DT(脱氧 - 胸腺苷核苷酸的短序列)标记为互补底漆,该引物与poly-A尾巴结合,从而可以通过反转录酶来扩展自由3'-OH端,以创建互补的DNA链。现在,使用RNase酶去除去mRNA,将单个链cDNA(SSCDNA)取出。借助于DNA聚合酶,将此SSCDNA转化为双链DNA。但是,要使DNA聚合酶合成互补链,需要3'- oh-end。这是由SSCDNA本身通过在3'端产生发夹循环来通过围绕自身来提供的。聚合酶延伸了3'-OH端,然后通过S 1核酸酶的剪刀作用打开3'端的环。然后,使用限制性核酸内切酶和DNA连接酶来克隆序列到细菌质粒中。