每个人都参与其中。为步行者鼓掌,结交新朋友,分享故事和经历——这是一种真正的社区精神。我并没有过多考虑一年中失去一个晚上的睡眠——从宏观角度来看,参加活动的人往往比我失去的更多。我对任何想在 MoonWalk 做志愿者的人说的是“去做吧!”。即使时间很短,你对步行者来说也非常重要,他们为受癌症影响的人们带来了巨大的改变。”
组织在制定和实施欧盟环境政策的过程中:乌克兰的经验”我准备了赠款项目“亚速地区的年轻人选择清洁水体”,该项目得到了国际慈善组织ACTED的资助金额 10,000美元该项目是多方面的,包括各种公共政策工具。实际完成的工作是一个例子,说明当地公共组织如何在完善的计划的指导下,在国际组织的支持下并与亚速国家自然公园合作,显着提高公众参与的有效性学童、青年、地方自治机构、科学机构、企业以浴场的形式在当地执行环境政策。您可以从我将在部门会议上提交的报告摘要中了解该项目的详细信息。
图 2 玉米雌花序穗的雌性化。AI 玉米穗发育的 SEM。A 未成熟穗显示抑制苞片(SB)腋中 SPM 的规则叶序。B SPM 分成两个 SM。C、D SM 形成两个颖片(GL)原基并产生两个 FM,即上部(UFM)和下部(LFM)。EH UFM 形成花器官原基,心皮的周围细胞形成雌蕊脊(GR),变成称为花丝的长柱头。I 去除 GL 露出 LFM,它也形成花器官原基,但在发育早期中止。JA 从穗尖长出一簇花丝。K 穗中生殖分生组织转变(左)和小穗雌性化(右)的示意图。L,外稃;P,内稃;ST,雄蕊; PI,雌蕊;O,胚珠。比例尺:100 μm。
教授。I.O.二月;经济学博士科学,教授。N.V.科夫通;经济学博士科学,教授。N.V.谚语;经济学博士科学,教授。O.I.利亚申科;经济学博士科学,教授。MVSytnytskyi;经济学博士科学,副教授。学士伏击;博士菲尔洛。科学,副教授。MV彼得罗夫斯基;博士经济。科学,副教授。N.V.Honcharenko;博士经济。科学,副教授。N.V.鲁登科;经济学博士科学,副教授。电视来吧;博士经济。科学,副教授。N.V.Tomchuk - 波诺马连科;博士经济。科学,副教授。P.V.厨房;博士经济。科学,副教授。O.Yu。米罗什尼琴科;经济学博士科学,副教授。A.S.肖洛伊科;经济学博士科学,教授。N.V.布坚科;博士经济。科学,副教授。Z.O.帕扬;博士经济。科学,副教授。O.Yu。刻录;博士经济。科学,副教授。不适用普莱沙科娃;博士物理- 垫子。科学,副教授。电视裁缝;博士菲尔洛。科学,副教授。Yu.V.圣人。
科学会议“基辅哲学研究”,于 2022 年 5 月 20 日在 Borys Hrinchenko 基辅大学举行。提交的材料涵盖了现代人道主义的广泛热点问题,特别是城市哲学、哲学史、社会政治哲学、文化哲学、伦理学、美学、宗教研究、教育哲学、政治学等
摘要。在本次调查中,在印度卡纳塔克邦的 Ponnampet 和 Mandya 地区进行了稻瘟病反应的表型评估,结果表明,IR64、Jaya、KMP153、IR30864、Mandya Sona-1、Mandya Sona-2、KCP- 1、Dodda Byra 和 Malgudi Sanna 等水稻品种易受叶瘟和颈瘟的影响。此外,抗叶瘟的水稻品种如 KMP200、DHMAS70Q164-1b、Karibatta、Coimbatore Sanna 等仅对颈瘟表现出易感反应。相比之下,抗颈瘟的品种如 JyothixBR2655、Punkutt Kodi、Sirsi、222 和 Gangadale 也易受叶瘟的影响。只有一个品种 BR2655 对叶瘟和颈瘟病均表现出抗性。使用简单序列重复标记进行的基因型研究表明,通过分析所选水稻品种和来自不同生态区域的传统水稻品种的抗性基因分布和基因分型,使用等位基因特异性标记鉴定出 20 个主要的稻瘟病抗性基因。20 个主要稻瘟病抗性基因的单个基因频率从 10.34 到 100% 不等。Pi9 和 Pizt 基因中抗性基因分布频率分别较低和较高。本研究结果将有助于通过遗传学研究和植物-病原体相互作用制定提高稻瘟病抗性的策略。
91 张晓琴 内科学 余晨 AT1R/β-arrestin 信号通路调控LOX 介 导肾脏间质纤维化的机制研究 学术学位
对产量相关性状进行遗传解析可用于通过分子设计育种提高小麦产量。本研究对 245 个小麦品种进行了基因分型,在 7 种环境下测定了 13 个与产量相关的株高、粒重和穗相关性状,利用单基因座和多基因座模型,通过全基因组关联研究 (GWAS) 鉴定了 778 个与这些性状相关的基因座。其中 9 个为主效基因座,还有 7 个为新发现的基因座,包括:Qph/lph.ahau- 7A(株高 (PH) 和叶枕高度 (LPH))、Qngps/sps.ahau-1A(穗粒数 (NGPS) 和穗小穗数 (SPS))、Qsd.ahau-2B.1 和 Qsd.ahau-5A.2(小穗密度 (SD))、Qlph.ahau-7B.2(LPH)、Qgl.ahau-7B.3(粒长 (GL))和 Qsl.ahau-3A.3(穗长 (SL))。通过标记开发、重新 GWAS、基因注释和克隆以及序列变异、单倍型和表达分析,我们确认了两个新的主要基因座,并确定了潜在候选基因 TraesCS7A02G118000(命名为 TaF-box-7A)和 TraesCS1A02G190200(命名为 TaBSK2-1A),它们分别与 PH 相关性状的 Qph/lph.ahau-7A 和穗相关性状的 Qngps/sps.ahau-1A 相关。此外,我们报道了两种有利的单倍型,包括与低 PH 和 LPH 相关的 TaF-box-Hap1 以及与高 NGPS 和 SPS 相关的 TaBSK2-Hap3。总之,这些发现对于提高小麦产量和丰富我们对产量相关性状复杂遗传机制的理解很有价值。
这项研究由伊拉克农业部植物保护局开展,旨在了解在小麦品种 IPA-99 中添加植物生长促进微生物 (PGPM)(巴西安氏螺旋菌、梭形赖氨酸芽孢杆菌、鹰嘴豆根瘤菌 CP-93、荧光假单胞菌、巨大芽孢杆菌和哈茨木霉)作为生物肥料与 25% 矿物肥料的效果。实验室研究包括分离和鉴定赖氨酸芽孢杆菌,该菌在体外与这些微生物之间没有拮抗作用。研究结果表明,T2处理在大多数性状中均表现优异,包括分蘖数(4.00 分蘖株 -1 )、穗长(10.50 cm)、每穗小穗数(19.50 小穗穗 -1 )、百粒重(3.50 g)和每穗粒数(35.43 粒穗 -1 )。该处理在籽粒氮含量(4.870%)、磷含量(1.943%)、钾含量(4.156%)和蛋白质含量(30.43%)等方面也表现出色。除生物产量特性(处理T5(62.30 g株 -1 )优于处理T1(23.10%))和收获指数(处理T2)外,T2优于所有处理。但是,它们与处理T2之间并无显著差异。关键词:小麦、梭形芽孢杆菌、生物肥料、PGPM、生长和产量性状 主要发现:梭形芽孢杆菌作为生物肥料处理,结合 25% 的推荐矿物肥料剂量,显著提高了小麦的生长和产量参数。此外,生物肥料还增加了小麦植株中 NPK 的利用率。
全球气温上升导致温室内芒果 ( Mangifera indica L. ) 的种植面积扩大,尤其是在韩国南部。然而,芒果树过度的营养生长会阻碍生殖生长和果实生产,对温室种植构成挑战。花芽分化过程中赤霉素 (GA) 水平过高会阻碍这一过程,减少开花和结果。这项先导研究调查了已知的 GA 抑制剂多效唑 (PBZ) 和调环酸钙 (Pro-Ca) 对温室条件下生长的芒果树花芽分化和穗发育的影响。设立了两个处理组:PBZ 一次和两次(22.9% 悬浮浓缩液中 1,500 ppm)以及 Pro-Ca 一次和两次(20% 悬浮浓缩液中 500 ppm)。处理于 2022 年 7 月进行,在夏季修剪后枝条变硬后进行,恰逢花芽分化诱导期(2022 年 11 月中旬至 2023 年 1 月中旬)。在此期间,平均温度和平均相对湿度分别为 13.4°C 和 62%。通过七个阶段观察到生殖生长变化。PBZ 一次和两次处理最快达到第 2 阶段(花芽起始),其次是 Pro-Ca 一次和两次,以及对照组,均在四天内完成。值得注意的是,处理和对照之间的结果没有显著差异。关于穗特征,PBZ 两次产生的穗最长,而 Pro-Ca 两次产生的穗最短。然而,所有组的穗宽度保持相似。研究结果表明,PBZ 两次、Pro-Ca 一次和 Pro-Ca 两次处理可有效促进花芽分化并根据生长特性提高穗质量。此外,随后的 GC-MS 分析和热图分析发现,所有样品(包括对照组和处理组)中都存在八种关键代谢物,这些代谢物均与芒果开花反应有关。总体而言,GA 抑制剂在诱导花芽分化方面表现出良好的效果。