b“季度回顾 \xe2\x80\xa2 截至 2024 年 12 月 31 日的季度,摩根大通美国股票策略表现不及基准标准普尔 500 指数。 \xe2\x80\xa2 在医疗保健领域,我们对 Regeneron Pharmaceuticals 的增持导致业绩下滑。Regeneron 的股票表现下滑主要是由于对其眼药 Eylea 的竞争定位以及安进可能推出的生物仿制药的担忧。尽管报告了强劲的季度收入和收益增长,但 Eylea HD 的转换速度低于预期以及生物仿制药竞争的威胁带来了不确定性。该公司的财务业绩显示收入同比增长和收益增加,但这些积极的结果被市场对 Eylea 未来的担忧所掩盖。 \xe2\x80\xa2 在非必需消费品领域,我们对特斯拉汽车的减持导致业绩下滑。公司报告盈利稳健,由于成本降低和生产效率提高,毛利率和盈利能力有所改善。值得注意的是,特斯拉在其 Cybertruck 部门实现了盈利,并宣布了推出新款平价车型的计划。该公司推动对无人监管的全自动驾驶汽车进行国家监管,以及 2024 年美国总统大选对监管前景的影响进一步影响了股价表现。\xe2\x80\xa2 在金融方面,我们对富国银行的增持有助于提高业绩。由于投资者对放松管制和可能取消资产上限的乐观情绪,富国银行的股票表现有所改善。该公司报告的净收入和每股收益较上一季度增加,费用收入增长抵消了净利息收入的阻力。\xe2\x80\xa2 在信息技术领域,我们对 Marvell Technology 的增持有助于提高业绩。Marvell 的数据中心部门实现了显着增长,尤其是在定制人工智能 (AI) 硅片和光电方面。该公司报告称,收入同比和环比均大幅增长,每股收益显著提高。Marvell 与亚马逊网络服务 (Amazon Web Services) 的战略合作伙伴关系以及定制硅片项目的成功提升为其积极的财务业绩做出了贡献。由于产品组合,尤其是定制硅片的收入贡献增加,毛利率面临压力,但管理层已经充分传达了这种组合动态,因此投资者在很大程度上预料到了这一点。
聚合酶链反应(PCR)基于菲律宾的通古病毒的诊断。与DA区域作物保护中心合作,通过PCR验证了田间收集的水稻植物中的通古感染。对热点地区的通染病毒的多样性分析有助于更好地了解其遗传变异性和对疾病管理的影响。产生表达Tungro病毒外套蛋白的重组细菌,从而使该蛋白质大规模生产以表征和潜在用作抗血清生产中的替代抗原。生产抗血清,用于对通牙病毒进行免疫学检测,以进行更有效的诊断工具,并进行了植物和GLH的病毒纯化。16。对摄像头的轻陷阱原型进行了现场评估。对准确识别和
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
b“在这项工作中,我们为 Jiang 等人的 T RH 变换提供了新的、更严格的证明。(ASIACRYPT 2023),它将 OW-CPA 安全 PKE 转换为具有 IND-1CCA 安全性的 KEM,这是典型 IND-CCA 安全性的变体,其中只允许单个解封装查询。此类 KEM 非常高效,并且 Huguenin-Dumittan 和 Vaudenay 在 EUROCRYPT 2022 上证明了它们足以用于实际应用。我们在随机预言模型 (ROM) 和量子随机预言模型 (QROM) 中重新证明了 Jiang 等人的 T RH 变换,适用于底层 PKE 是刚性确定性的情况。在 ROM 和 QROM 模型中,我们的归约都实现了 O (1) 的安全损失因子,显着改善了 Jiang 等人的结果,其在 ROM 中的安全损失因子为 O (q),在 QROM 中的安全损失因子为 O q 2。值得注意的是,我们严密 QROM 缩减的核心是一个名为 \xe2\x80\x9creprogram-after-measure\xe2\x80\x9d 的新工具,它克服了 QROM 证明中由 oracle 重新编程造成的缩减损失。该技术可能具有独立意义,并且可用于实现其他后量子密码方案的严密 QROM 证明。我们注意到,我们的结果还提高了 Huguenin-Dumittan 和 Vaudenay (EUROCRYPT 2022) 的 TH 变换(也将 PKE 转换为 KEM)的缩减严密性,正如 Jiang 等人提供了从 TH 变换到 T RH 变换的严密缩减(ASIACRYPT 2023)。“
高中生对人工智能聊天机器人在英语学习中使用的看法:好处、顾虑和道德考虑 Ji Eun Lee 和 Unkyoung Maeng Lee, JE, & Maeng, U. (2023)。高中生对人工智能聊天机器人在英语学习中使用的看法:好处、顾虑和道德考虑。泛太平洋应用语言学协会杂志,27 (2),53–72。本研究探讨了高中生对在英语学习中使用人工智能聊天机器人的看法。具体来说,它旨在衡量聊天机器人使用的广度,并辨别与其使用相关的潜在挑战的看法。来自一所高中的 30 名学生参加了调查。数据分析涉及频率、平均值和独立样本 t 检验。研究结果如下。首先,学生高度认可聊天机器人的重要性和价值,并对其可用性给予了积极评价。然而,他们之前使用聊天机器人的经验并没有影响这种看法。第二,学生认为在英语学习中使用聊天机器人非常有益。特别是,那些有聊天机器人使用经验的人比没有经验的人有更积极的看法。第三,学生相对意识到使用聊天机器人的潜在道德问题。无论他们是否有使用聊天机器人的经验,他们都特别担心抄袭和版权问题以及潜在的个人信息泄露。他们还意识到了潜在的教育问题,担心过度依赖聊天机器人可能会阻碍他们的探索性学习或导致直接抄袭作业,错失学习机会。然而,没有经验的人比有经验的人更持怀疑态度。本文还讨论了从这些发现中得出的含义和建议。关键词:人工智能聊天机器人、感知、教育用途、道德问题 1 引言 第四次工业革命开启了一个多种技术融合和快速发展的时代。值得注意的是,人工智能的引入不仅有望在制造业、经济和医疗保健等行业取得重大潜在进步,而且还在不断增加
瞬态受体潜在阳离子通道亚家族V成员1(TRPV1)是Ca 2+渗透性的非选择性阳离子通道,主要在感觉神经纤维中发现。先前的研究集中于疼痛传播。然而,最近的研究发现,除了与疼痛相关联,TRPV1通道还在免疫调节中起作用,其失调通常会影响类风湿关节炎(RA)的发展。对机制的透彻理解将有助于设计新的TRPV1靶向药物并改善RA的临床效率。在这里,我们提供了一个更新且全面的概述,概述了TRPV1通道如何本质地调节神经元和免疫细胞,以及如何外在影响血管生成和骨骼破坏的Synoviocytes或软骨细胞中TRPV1通道的变化。在针对TRPV1治疗炎症性关节炎的研究中已取得了快速的进步,但是关于RA的治疗作用,仍然存在着广泛的领域。我们提出了针对RA治疗中TRPV1通道的策略,总结了当前研究中的困难和有希望的进步,以便更好地了解TRPV1通道在RA病理学中的作用,这可以加速TRPV1靶向调节剂的开发,以在更有效的RA Therapies设计和开发更有效的RA Therapies。
b'genation 的 C3 和 C2 位尚未开发。在此,我们报道了一种无催化剂获取 1-芳基 2,3-二碘咔唑 [7,8] 的方法,其中涉及碘转位(方案 1D)。值得注意的是,我们的方案允许在三个连续位置 [9] 即 C1、C2 和 C3 对咔唑核心进行可控官能化。环化前体 (碘吲哚基)炔醇 1a \xe2\x80\x93 n 是使用已知程序由适当的吲哚-2-甲醛制备的。[5] 我们的旅程始于研究苯基取代炔醇 1a 作为模型底物的反应(表 1)。 [10] 我们研究了 1a 与几种碘化试剂(如 I 2 、NIS、ICl 和 Ipy 2 BF 4 )的反应。在碳酸钠存在下,在异丙醇中,在 15 °C 下使用 ICl [11] 可有效实现串联碘环化-碘移位。使用 1.1 倍过量的 ICl 可得到三环 2a ,产率为 50%(表 1,条目 5),而使用 2.5 倍过量的 ICl 可得到所需的杂环,产率为 60%(表 1,条目 3)。通过对粗反应混合物进行 TLC 和 1 H NMR 分析观察到总转化率,未检测到副产物或聚合反应。然而,在柱层析纯化 2,3-二碘-咔唑 2a 的过程中观察到一些分解,这可能是导致分离产率适中的原因。值得注意的是,重排的 1-苯基-2,3-二碘-咔唑 2a 是唯一的区域异构体。使用有机碱代替 K 2 CO 3 或不同的溶剂'
*增加抵免额:必须符合现行工资和学徒期要求 **国内内容:即材料在美国制造 ***能源社区:棕地(由 EPA 定义);失业率高于平均水平的社区,且 1) 直接就业人数为 0.17 人或 2) 煤炭、石油或天然气加工产生的当地税收收入超过 25%;包含矿山和/或分别在 1999 年 12 月 31 日或 2009 年 12 月 31 日之后退役的燃煤发电机组的人口普查区 | 来源:立法全文(链接)| 免责声明:特灵不提供税务、法律或会计建议。本材料仅供参考,不应将其作为税务、法律或会计建议的依据。税法不断变化。所有决定均由您负责,您应咨询自己的税务、法律和会计顾问。特灵对根据所提供材料采取的行动不承担任何责任。